Welcome to visit Zhongnan Medical Journal Press Series journal website!

Home Articles Vol 32,2023 No.5 Detail

The effect of epithelial-mesenchymal transition on the sensitivity of ferroptosis inducers in lung cancer

Published on May. 30, 2023Total Views: 809 times Total Downloads: 183 times Download Mobile

Author: Shu XI 1, 2, 3 Meng-Yang LIU 3 Meng-Meng GUO 1, 3 Jin-Hui ZHANG 1, 3 Dao-Jing MING 1, 3 Zi-Hao QI 1, 3 Shuai YUAN 3 Yi-Jie ZHANG 1, 2

Affiliation: 1. School of Clinical Medicine, Henan University, Kaifeng 475000, Henan Province, China 2. Department of Respiratory and Critical Care Medicine, Huaihe Hospital of Henan University, Kaifeng 475000, Henan Province, China 3. Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China

Keywords: Lung cancer Epithelial-mesenchymal transition Ferroptosis

DOI: 10.19960/j.issn.1005-0698.202305005

Reference: Shu XI, Meng-Yang LIU, Meng-Meng GUO, Jin-Hui ZHANG, Dao-Jing MING, Zi-Hao QI, Shuai YUAN, Yi-Jie ZHANG.The effect of epithelial-mesenchymal transition on the sensitivity of ferroptosis inducers in lung cancer[J].Yaowu Liuxingbingxue Zazhi,2023, 32(5): 513-521.DOI: 10.19960/j.issn.1005-0698.202305005.[Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

Objective  To investigate the effect of epithelial-mesenchymal transition (EMT) on the sensitivity to ferroptosis inducers in lung cancer.

Methods  Bioinformatics analysis was utilized to as-sess the relationship between EMT-related genes and the sensitivity of multiple drugs. Cells with low expression of E-cadherin and high expression of N-cadherin or high expression of E-cadherin and low expression of N-cadherin were sorted by flow cytometry to simulate lung cancer epithelial and mesen-chymal cells. The sensitivity of different types of lung cancer cells to ferroptosis was compared by treat-ment with the ferroptosis inducer (GPX4) and endogenous ferroptosis inducers (IFN-γ combined with arachidonic acid).

Results  The resistance to ferroptosis inducers was positively correlated with the expression of E-cadherin and negatively correlated with the expression of vimentin, zinc finger E-box-binding homeobox 1 and zinc finger E-box-binding homeobox 2. Treatment with ferropto-sis-inducers revealed that lung cancer cells with low expression of E-cadherin and high expression of N-cadherin were more sensitive to ferroptosis. The ferroptosis inhibitor ferrostatin-1 could reverse the induction of ferroptosis by IFN-γ combined with arachidonic acid.

Conclusion  Lung cancer cells un-dergoing EMT are more sensitive to ferroptosis, which could potentially serve as a novel therapeutic strategy for the treatment of metastatic and treatment-resistant lung cancer.

Full-text
Please download the PDF version to read the full text: download
References

1.Singh M, Yelle N, Venugopal C, et al. EMT: Mechanisms and therapeutic implications[J]. Pharmacol Ther, 2018, 182: 80-94. DOI: 10.1016/j.pharmthera.2017.08.009.

2.De Craene B, Berx G. Regulatory networks defining EMT during cancer initiation and progression[J]. Nat Rev Cancer, 2013, 13(2): 97-110. DOI: 10.1038/nrc3447.

3.Shibue T, Weinberg RA. EMT, CSCs, and drug resistance: the mechanistic link and clinical implica-tions[J]. Nat Rev Clin Oncol, 2017, 14(10): 611-629. DOI: 10.1038/nrclinonc.2017.44.

4.Taki M, Abiko K, Ukita M, et al. Tumor immune microenvironment during epithelial-mesenchymal tran-sition[J]. Clin Cancer Res, 2021, 27(17): 4669-4679. DOI: 10.1158/1078-0432.Ccr-20-4459.

5.Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5): 1060-1072. DOI: 10.1016/j.cell. 2012.03.042.

6.Jiang X, Stockwell BR, Conrad M. Ferroptosis: mechanisms, biology and role in disease[J]. Nat Rev Mol Cell Biol, 2021, 22(4): 266-282. DOI: 10.1038/s41580-020-00324-8.

7.Zhang C, Liu X, Jin S, et al. Ferroptosis in cancer therapy: a novel approach to reversing drug re-sistance[J]. Mol Cancer, 2022, 21(1): 47. DOI: 10.1186/s12943-022-01530-y.

8.Chen X, Li J, Kang R, et al. Ferroptosis: machinery and regulation[J]. Autophagy, 2021, 17(9): 2054-2081. DOI: 10.1080/15548627.2020.1810918.

9.Ebrahimi N, Adelian S, Shakerian S, et al. Crosstalk between ferroptosis and the epitheli-al-mesenchymal transition: implications for inflammation and cancer therapy[J]. Cytokine Growth Fac-tor Rev, 2022, 64:33-45. DOI: 10.1016/j.cytogfr.2022.01.006.

10.Viswanathan VS, Ryan MJ, Dhruv HD, et al. Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway[J]. Nature, 2017, 547(7664): 453-457. DOI: 10.1038/nature23007.

11.Hangauer MJ, Viswanathan VS, Ryan MJ, et al. Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition[J]. Nature, 2017, 551(7679): 247-250. DOI: 10.1038/nature24297.

12.Loh CY, Chai JY, Tang TF, et al. The E-cadherin and N-cadherin switch in epithelial-to-mesenchymal transition: signaling, therapeutic implications, and challenges[J]. Cells, 2019, 8(10): 1118. DOI: 10.3390/cells8101118.

13.Liao P, Wang W, Wang W, et al. CD8+ T cells and fatty acids orchestrate tumor ferroptosis and im-munity via ACSL4[J]. Cancer Cell, 2022, 40(4): 365-378.e6. DOI: 10.1016/j.ccell.2022.02.003.

14.王娟, 韩旭, 赵宁, 等. 长链非编码RNA在非小细胞肺癌中的研究进展[J]. 医学新知. [Wang J, Han X, Zhao N, et al. The research progress into long non-coding RNA in non-small cell lung cancer[J]. New Medicine.] DOI: 10.12173/j.issn.1004-5511.202207025.

15.沈姗, 杨洁, 刘云霞. 安罗替尼治疗晚期非小细胞肺癌的快速卫生技术评估[J]. 医学新知, 2021, 31(5): 350-356. [Shen S, Yang J, Liu YX. Rapid health technology assessment of anlotinib in treatment of advanced non-small cell lung cancer[J]. New Medicine, 2021, 31(5): 350-356.] DOI: 10.12173/j.issn.1004-5511.202102017.

16.苏广全, 张旭东, 方萍萍. 信迪利单抗一线治疗晚期鳞状非小细胞肺癌的成本-效用分析[J].药物流行病学杂志, 2022, 31(11): 756-760. [Su GQ, Zhang XD, Fang PP, et al. Cost-utility analysis of first-line treatment of ad-vanced squamous non-small cell lung cancer with sintilimab[J]. Chinese Journal of Pharmacoepidemi-ology, 2022, 31(11): 756-760.] DOI: 10.19960/j.cnki.issn1005-0698.2022.11.007.

17.Mittal V. Epithelial mesenchymal transition in tumor metastasis[J]. Annu Rev Pathol, 2018, 13: 395-412. DOI: 10.1146/annurev-pathol-020117-043854.

18.Paolillo M, Schinelli S. Extracellular matrix alterations in metastatic processes[J]. Int J Mol Sci, 2019, 20(19): 4947. DOI: 10.3390/ijms20194947.

19.Khanbabaei H, Ebrahimi S, García-Rodríguez JL, et al. Non-coding RNAs and epithelial mesenchymal tran-sition in cancer: molecular mechanisms and clinical implications[J]. J Exp Clin Cancer Res, 2022, 41(1): 278. DOI: 10.1186/s13046-022-02488-x.

20.Xie S, Wu Z, Qi Y, et al. The metastasizing mechanisms of lung cancer: Recent advances and therapeu-tic challenges[J]. Biomed Pharmacother, 2021, 138: 111450. DOI: 10.1016/j.biopha.2021.111450.

21.Xie Y, Hou W, Song X, et al. Ferroptosis: process and function[J]. Cell Death Differ, 2016, 23(3): 369-379. DOI: 10.1038/cdd.2015.158.

22.Stockwell BR, Friedmann Angeli JP, Bayir H, et al. Ferroptosis: a regulated cell death nexus linking me-tabolism, redox biology, and disease[J]. Cell, 2017, 171(2): 273-285. DOI: 10.1016/j.cell.2017.09.021.

23.Yan HF, Zou T, Tuo QZ, et al. Ferroptosis: mechanisms and links with diseases[J]. Signal Transduct Target Ther, 2021, 6(1): 49. DOI: 10.1038/s41392-020-00428-9.

24.Yang WS, Kim KJ, Gaschler MM, et al. Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis[J]. Proc Natl Acad Sci USA, 2016, 113(34): E4966-4975. DOI: 10.1073/pnas.1603244113.

25.Lee J, You JH, Kim MS, et al. Epigenetic reprogramming of epithelial-mesenchymal transition pro-motes ferroptosis of head and neck cancer[J]. Redox Biol, 2020, 37: 101697. DOI: 10.1016/j.redox.2020.101697.

26.Wang M, Li S, Wang Y, et al. Gambogenic acid induces ferroptosis in melanoma cells undergoing epi-thelial-to-mesenchymal transition[J]. Toxicol Appl Pharmacol, 2020, 401: 115110. DOI: 10.1016/j.taap.2020.115110.

27.Sato M, Matsumoto M, Saiki Y, et al. BACH1 promotes pancreatic cancer metastasis by repressing epithelial genes and enhancing epithelial-mesenchymal transition[J]. Cancer Res, 2020, 80(6): 1279-1292. DOI: 10.1158/0008-5472.

28.Wu J, Minikes AM, Gao M, et al. Intercellular interaction dictates cancer cell ferroptosis via NF2-YAP signalling[J]. Nature, 2019, 572(7769): 402-406. DOI: 10.1038/s41586-019-1426-6.

29.Chen P, Li X, Zhang R, et al. Combinative treatment of β-elemene and cetuximab is sensitive to KRAS mutant colorectal cancer cells by inducing ferroptosis and inhibiting epithelial-mesenchymal transfor-mation[J]. Theranostics, 2020, 10(11): 5107-5119. DOI: 10.7150/thno.44705.

30.Müller S, Sindikubwabo F, Cañeque T, et al. CD44 regulates epigenetic plasticity by mediating iron en-docytosis[J]. Nat Chem, 2020, 12(10): 929-938. DOI: 10.1038/s41557-020-0513-5.

31.Jorgovanovic D, Song M, Wang L, et al. Roles of IFN-γ in tumor progression and regression: a re-view[J]. Biomark  Res, 2020, 8: 49. DOI: 10.1186/s40364-020-00228-x.

32.Yarla NS, Bishayee A, Sethi G, et al. Targeting arachidonic acid pathway by natural products for cancer prevention and therapy[J]. Semin Cancer Biol, 2016, 40-41: 48-81. DOI: 10.1016/j.semcancer.2016.02.001.

Popular papers
Last 6 months