Welcome to visit Zhongnan Medical Journal Press Series journal website!

Home Articles Vol 34,2025 No.4 Detail

Research progress on the role of vitamin D and its signaling pathway in disease development

Published on Apr. 27, 2025Total Views: 40 times Total Downloads: 11 times Download Mobile

Author: ZHANG Xiaomei 1# YE Hui 2# YANG Fang 3# MIN Rui 1 TONG Yeqing 3

Affiliation: 1. School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430011, China 2. Xiantao Center for Disease Control and Prevention, Xiantao 433099, Hubei Province, China 3. Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, China

Keywords: Vitamin D Signaling pathways Occurrence of disease

DOI: 10.12173/j.issn.1005-0698.202409039

Reference: ZHANG Xiaomei, YE Hui, YANG Fang, MIN Rui, TONG Yeqing. Research progress on the role of vitamin D and its signaling pathway in disease development[J]. Yaowu Liuxingbingxue Zazhi, 2025, 34(4): 456-466. DOI: 10.12173/j.issn.1005-0698.202409039.[Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

Vitamin D is a fat-soluble vitamin primarily synthesized through skin exposure to ultraviolet B irradiation and dietary intake. Its biological effects are not limited to the regulation of calcium and phosphorus metabolism but also involve a variety of physiological functions such as immune modulation, anti-inflammation, and anti-tumor. In recent years, as research deepens, the role of the vitamin D signaling pathway in various diseases has been gradually revealed, and its regulatory mechanisms are complex and diverse. This paper systematically reviews the molecular mechanisms underlying the vitamin D signaling pathway, including the two-step hydroxylation activation process of vitamin D, the regulation of gene transcription mediated by the vitamin D receptor (VDR), the homeostatic regulation involving vitamin D-binding protein and metabolic enzymes such as 1α-hydroxylase and 24-hydroxylase, and interactions with other signaling pathways, including NF-κB, Wnt, and Hedgehog. This study highlights the role of vitamin D in various multi-system diseases such as inflammatory bowel disease, diabetes and its complications, obesity, cardiovascular disease, colorectal cancer, breast cancer, among others. The systematic cognitive framework for understanding the vitamin D signaling pathway was conducted, providing a theoretical basis for precision treatment strategies targeting VDR.

Full-text
Please download the PDF version to read the full text: download
References

1.张丽华, 庞丽霞, 林涛, 等. 某院风湿免疫科成年患者25-羟维生素D水平现况调查[J]. 药物流行病学杂志, 2016, 25(5): 326-328. [Zhang LH, Pang LX, Lin T, et al. Investigation of 25-hydroxyvitamin D levels in adult patients in rheumatology and immunology department of a hospital[J]. Chinese Journal of Pharmacoepidemiology, 2016, 25(5): 326-328.] DOI: 10.19960/j.cnki.issn1005-0698.2016.05.015.

2.王珏, 边平达, 寿张轩, 等. 高龄女性服用复方钙剂与骨密度和骨代谢标志物的关系[J]. 药物流行病学杂志, 2017, 26(7): 496-498. [Wang J, Bian PD, Shou ZX, et al. Relationship between calcium supplementation and bone mineral density and bone metabolic markers in elderly women[J]. Chinese Journal of Pharmacoepidemiology, 2017, 26(7): 496-498.] DOI: 10.19960/j.cnki.issn1005-0698.2017.07.012.

3.张浩, 刘爽, 皮琦, 等. 维生素D对结核病的治疗与预防研究进展[J]. 药物流行病学杂志, 2022, 31(10): 705-708. [Zhang H, Liu S, Pi Q, et al. Research progress of vitamin D in the treatment and prevention of tuberculosis[J]. Chinese Journal of Pharmacoepidemiology, 2022, 31(10): 705-708.] DOI: 10.19960/j.cnki.issn1005-0698.2022.10.011.

4.Delrue C, Speeckaert MM. Vitamin D and vitamin D-binding protein in health and disease[J]. Int J Mol Sci, 2023, 24(5): 4642. DOI: 10.3390/ijms24054642.

5.Webb AR, Decosta BR, Holick MF. Sunlight regulates the cutaneous production of vitamin D3 by causing its photodegradation[J]. J Clin Endocrinol Metab, 1989, 68(5): 882-887. DOI: 10.1210/jcem-68-5-882.

6.Hollis BW, Wagner CL. Clinical review: the role of the parent compound vitamin D with respect to metabolism and function: why clinical dose intervals can affect clinical outcomes[J]. J Clin Endocrinol Metab, 2013, 98(12): 4619-4128. DOI: 10.1210/jc.2013-2653.

7.Saponaro F, Saba A, Zucchi R. An update on vitamin D metabolism[J]. Int J Mol Sci, 2020, 21(18): 6573. DOI: 10.3390/ijms21186573.

8.Carlberg C. Vitamin D and its target genes[J]. Nutrients, 2022, 14(7): 1354. DOI: 10.3390/nu14071354.

9.侯宇, 李景辉, 邓超. 维生素D /维生素D受体、自噬与感染[J]. 中南大学学报(医学版), 2022, 47(6): 780-785. [Hou Y, Li J, Deng C. Vitamin D/vitamin D receptor, autophagy, and infection[J]. Journal of Central South University Medical sciences, 2022, 47(6): 780-785.] DOI: 10.11817/j.issn.1672-7347.2022.210556.

10.Levy RJ, Howard SL, Oshry LJ. Carboxyglutamic acid (Gla) containing proteins of human calcified atherosclerotic plaque solubilized by EDTA. Molecular weight distribution and relationship to osteocalcin[J]. Atherosclerosis, 1986, 59(2): 155-160. DOI: 10.1016/0021-9150(86)90044-4.

11.Gombart AF, Borregaard N, Koeffler HP. Human cathelicidin antimicrobial peptide (CAMP) gene is a direct target of the vitamin D receptor and is strongly up-regulated in myeloid cells by 1,25-dihydroxyvitamin D3[J]. FASEB J, 2005, 19(9): 1067-1077. DOI: 10.1096/fj.04-3284com.

12.Dusso AS, Negrea L, Gunawardhana S, et al. On the mechanisms for the selective action of vitamin D analogs[J]. Endocrinology, 1991, 128(4): 1687-1692. DOI: 10.1210/endo-128-4-1687.

13.Harrison SR, Li D, Jeffery LE, et al. Vitamin D, autoimmune disease and rheumatoid arthritis[J]. Calcif Tissue Int, 2020, 106(1): 58-75. DOI: 10.1007/s00223-019-00577-2.

14.Luo W, Hershberger PA, Trump DL, et al. 24-Hydroxylase in cancer: impact on vitamin D-based anticancer therapeutics[J]. J Steroid Biochem Mol Biol, 2013, 136: 252-257. DOI: 10.1016/j.jsbmb.2012.09.031.

15.Ismail MT, Jinge Z, Hector FD, et al. Analysis of the binding sites of vitamin D 1α-hydroxylase (CYP27B1) and vitamin D 24-hydroxylase (CYP24A1) for the design of selective CYP24A1 inhibitors: homology modelling, molecular dynamics simulations and identification of key binding requirements[J]. Bioorg Med Chem, 2017, 25(20): 5629-5636. DOI: 10.1016/j.bmc.2017.08.036.

16.乔俊英, 宋丽, 张艳丽, 等. 哮喘小鼠HMGB1/TLR4/NF-κB信号通路及维生素D的作用[J]. 中国当代儿科杂志, 2017, 19(1): 95-103. [Qiao JY, Song L, Zhang YL, et al. HMGB1/TLR4/NF-κB signaling pathway and role of vitamin D in asthmatic mice[J]. Chinese Journal of Contemporary Pediatrics, 2017, 19(1): 95-103.] DOI: 10.7499/j.issn.1008-8830.2017.01.016.

17.Pálmer HG, González-Sancho JM, Espada J, et al. Vitamin D3 promotes the differentiation of colon carcinoma cells by the induction of E-cadherin and the inhibition of beta-catenin signaling[J]. J Cell Biol, 2001, 154(2): 369-387. DOI: 10.1083/jcb.200102028.

18.Shah S, Islam MN, Dakshanamurthy S, et al. The molecular basis of vitamin D receptor and beta-catenin crossregulation[J]. Mol Cell, 2006, 21(6): 799-809. DOI: 10.1016/j.molcel.2006.01.037.

19.Aguilera O, Peña C, García JM, et al. The Wnt antagonist DICKKOPF-1 gene is induced by 1alpha,25-dihydroxyvitamin D3 associated to the differentiation of human colon cancer cells[J]. Carcinogenesis, 2007, 28(9): 1877-1884. DOI: 10.1093/carcin/bgm094.

20.Bijlsma MF, Spek CA, Zivkovic D, et al. Repression of smoothened by patched-dependent (pro-) vitamin D3 secretion[J]. PLoS Biol, 2006, 4(8): e232. DOI: 10.1371/journal.pbio.0040232.

21.Li CP, Su HQ, He LP. Vitamin D may alleviate pre-eclampsia by modulating the ferroptosis signalling pathway: a hypothesis based on recent literature[J]. J Cell Mol Med, 2023, 27(14): 1923-1927. DOI: 10.1111/jcmm.17754.

22.Xiao JH, Durand B, Chambon P, et al. Endogenous retinoic acid receptor (RAR)-retinoid X receptor (RXR) heterodimers are the major functional forms regulating retinoid-responsive elements in adult human keratinocytes. Binding of ligands to RAR only is sufficient for RAR-RXR heterodimers to confer ligand-dependent activation of hRAR beta 2/RARE (DR5)[J]. J Biol Chem, 1995, 270(7): 3001-3011. DOI: 10.1074/jbc.270.7.3001.

23.高玲, 袁天, 陈代娣, 等. 维生素D与代谢性炎症的研究进展[J]. 生命科学, 2019, 31(10): 1060-1068. [Gao L, Yuan T, Chen DD, et al. Research progress of vitamin D and metabolic inflammation[J]. Science China (Life Sciences), 2019, 31(10): 1060-1068.] DOI: 10.13376/j.cbls/2019131.

24.Behm C, Blufstein A, Gahn J, et al. 1,25(OH)2D3 differently affects immunomodulatory activities of mesenchymal stem cells depending on the presence of TNF-α, IL-1β and IFN-γ[J]. J Clin Med, 2019, 8(12): 2211. DOI: 10.3390/jcm8122211.

25.Mousa H, Al Saei A, Razali RM, et al. Vitamin D status affects proteomic profile of HDL-associated proteins and inflammatory mediators in dyslipidemia[J]. J Nutr Biochem, 2024, 123: 109472. DOI: 10.1016/j.jnutbio.2023.109472.

26.Vernia F, Valvano M, Longo S, et al. Vitamin D in inflammatory bowel diseases. mechanisms of action and therapeutic implications[J]. Nutrients, 2022, 14(2): 269. DOI: 10.3390/nu14020269.

27.Pittas AG, Kawahara T, Jorde R, et al. Vitamin D and risk for type 2 diabetes in people with prediabetes: a systematic review and Meta-analysis of individual participant data From 3 randomized clinical trials[J]. Ann Intern Med, 2023, 176(3): 355-363. DOI: 10.7326/M22-3018.

28.Athanassiou L, Kostoglou-Athanassiou I, Koutsilieris M, et al. Vitamin D and autoimmune rheumatic diseases[J]. Biomolecules, 2023, 13(4): 709. DOI: 10.3390/biom13040709.

29.Szymczak-Pajor I, Sliwinska A. Analysis of association between vitamin D deficiency and insulin resistance[J]. Nutrients, 2019, 11(4): 794. DOI: 10.3390/nu11040794.

30.Lei M, Liu Z, Guo J. The emerging role of vitamin D and vitamin D receptor in diabetic nephropathy[J]. Biomed Res Int, 2020, 2020: 4137268. DOI: 10.1155/2020/4137268.

31.Ren Z, Li W, Zhao Q, et al. The impact of 1,25-dihydroxy vitamin D3 on the expressions of vascular endothelial growth factor and transforming growth factor-β1 in the retinas of rats with diabetes[J]. Diabetes Res Clin Pract, 2012, 98(3): 474-480. DOI: 10.1016/j.diabres.2012.09.028.

32.Van Quill KR, Dioguardi PK, Tong CT, et al. Subconjunctival carboplatin in fibrin sealant in the treatment of transgenic murine retinoblastoma[J]. Ophthalmology, 2005, 112(6): 1151-1158. DOI: 10.1016/j.ophtha.2004.11.060.

33.Albert DM, Scheef EA, Wang S, et al. Calcitriol is a potent inhibitor of retinal neovascularization[J]. Invest Ophthalmol Vis Sci, 2007, 48(5): 2327-2334. DOI: 10.1167/iovs.06-1210.

34.Szymczak-Pajor I, Miazek K, Selmi A, et al. The action of vitamin D in adipose tissue: is there the link between vitamin D deficiency and adipose tissue-related metabolic disorders?[J]. Int J Mol Sci, 2022, 23(2): 956. DOI: 10.3390/ijms23020956.

35.Kong J, Li YC. Molecular mechanism of 1,25-dihydroxyvitamin D3 inhibition of adipogenesis in 3T3-L1 cells[J]. Am J Physiol Endocrinol Metab, 2006, 290(5): E916-E924. DOI: 10.1152/ajpendo.00410.2005.

36.Chang E, Kim Y. Vitamin D decreases adipocyte lipid storage and increases NAD-SIRT1 pathway in 3T3-L1 adipocytes[J]. Nutrition, 2016, 32(6): 702-708. DOI: 10.1016/j.nut.2015.12.032.

37.Sergeev IN. Vitamin D status and vitamin D-dependent apoptosis in obesity[J]. Nutrients, 2020, 12(5): 1392. DOI: 10.3390/nu12051392.

38.Sergeev IN, Song QM. High vitamin D and calcium intakes reduce diet-induced obesity in mice by increasing adipose tissue apoptosis[J]. Mol Nutr Food Res, 2014, 58(6): 1342-1348. DOI: 10.1002/mnfr.201300503.

39.Anderson JL, May HT, Horne BD, et al. Relation of vitamin D deficiency to cardiovascular risk factors, disease status, and incident events in a general healthcare population[J]. Am J Cardiol, 2010, 106(7): 963-968. DOI: 10.1016/j.amjcard.2010.05.027.

40.Wan ZZ, Guo JY, Pan A, et al. Association of serum 25-hydroxyvitamin D concentrations with all-cause and cause-specific mortality among individuals with diabetes[J]. Diabetes Care, 2021, 44(2): 350-357. DOI: 10.2337/dc20-1485.

41.Raslan E, Soliman SSA, Nour ZA, et al. Association of vitamin D deficiency with chronic stable angina: a case control study [J]. High Blood Press Cardiovasc Prev, 2019, 26(1): 77-80. DOI: 10.1007/s40292-018-0295-7.

42.Brøndum-Jacobsen P, Benn M, Jensen GB, et al. 25-hydroxyvitamin D levels and risk of ischemic heart disease, myocardial infarction, and early death: population-based study and Meta-analyses of 18 and 17 studies[J]. Arterioscler Thromb Vasc Biol, 2012, 32(11): 2794-2802. DOI: 10.1161/ATVBAHA. 112.248039.

43.Driggin E, Madhavan MV, Gupta A. The role of vitamin D in cardiovascular disease and COVID-19[J]. Rev Endocr Metab Disord, 2022,23(2):293-297. DOI: 10.1007/s11154-021-09674-w.

44.Cosentino N, Campodonico J, Milazzo V, et al. Vitamin D and cardiovascular disease: current evidence and future perspectives[J]. Nutrients, 2021, 13(10): 3603. DOI: 10.3390/nu13103603.

45.Yuan W, Pan W, Kong J, et al. 1,25-dihydroxyvitamin D3 suppresses renin gene transcription by blocking the activity of the cyclic AMP response element in the renin gene promoter[J]. J Biol Chem, 2007, 282(41): 29821-29830. DOI: 10.1074/jbc.M705495200.

46.Li Y C, Kong J, Wei M, et al. 1,25-dihydroxyvitamin D3 is a negative endocrine regulator of the renin-angiotensin system[J]. J Clin Invest, 2002, 110(2): 229-238. DOI: 10.1172/JCI15219.

47.Chen S, Swier VJ, Boosani CS, et al. Vitamin D deficiency accelerates coronary artery disease progression in swine[J]. Arterioscler Thromb Vasc Biol, 2016, 36(8): 1651-1659. DOI: 10.1161/ATVBAHA.116.307586.

48.Rodriguez AJ, Mousa A, Ebeling PR, et al. Effects of vitamin D supplementation on inflammatory markers in heart failure: a systematic review and Meta-analysis of randomized controlled trials[J]. Sci Rep, 2018, 8(1): 1169. DOI: 10.1038/s41598-018-19708-0.

49.Songyang Y, Song T, Shi Z, et al. Corrigendum to "effect of vitamin D on malignant behavior of non-small cell lung cancer cells". [Gene 768 (2021) 145309][J]. Gene, 2022, 846: 146883. DOI: 10.1016/j.gene.2022.146883.

50.El-Sharkawy A, Malki A. Vitamin D Signaling in inflammation and cancer: molecular mechanisms and therapeutic implications[J]. Molecules, 2020, 25(14): 3219. DOI: 10.3390/molecules25143219.

51.Wu X, Hu W, Lu L, et al. Repurposing vitamin D for treatment of human malignancies via targeting tumor microenvironment[J]. Acta Pharm Sin B, 2019, 9(2): 203-219. DOI: 10.1016/j.apsb.2018.09.002.

52.Razak S, Afsar T, Almajwal A, et al. Retraction note: growth inhibition and apoptosis in colorectal cancer cells induced by vitamin D-nanoemulsion (NVD): involvement of Wnt/β-catenin and other signal transduction pathways[J]. Cell Biosci, 2024, 14(1): 77. DOI: 10.1186/s13578-024-01262-0.

53.Hu PS, Li T, Lin JF, et al. VDR-SOX2 signaling promotes colorectal cancer stemness and malignancy in an acidic microenvironment[J]. Signal Transduct Target Ther, 2020, 5(1): 183. DOI: 10.1038/s41392-020-00230-7.

54.Beyerle J, Frei E, Stiborova M, et al. Biotransformation of xenobiotics in the human colon and rectum and its association with colorectal cancer[J]. Drug Metab Rev, 2015, 47(2): 199-221. DOI: 10.3109/03602532.2014.996649.

55.De La Puente-Yagüe M, Cuadrado-Cenzual MA, Ciudad-Cabañas MJ, et al. Vitamin D: and its role in breast cancer[J]. Kaohsiung J Med Sci, 2018, 34(8): 423-427. DOI: 10.1016/j.kjms.2018.03.004.

56.张远东, 赵晖, 李康健. 维生素D对前列腺癌的作用机制研究进展[J]. 临床泌尿外科杂志, 2017, 32(4): 319-323. [Zhang YD, Zhao H, Li KJ. Research progress of the mechanism of action of vitamin D in prostate cancer[J]. Journal of Clinical Urology, 2017, 32(4): 319-323.] DOI: 10.13201/j.issn.1001- 1420.2017.04.019.

57.Yiyan S, Yang S, Li D, et al. Vitamin D affects the warburg effect and stemness maintenance of non- small-cell lung cancer cells by regulating the PI3K/AKT/mTOR signaling pathway[J]. Curr Cancer Drug Targets, 2022, 22(1): 86-95. DOI: 10.2174/1568009621666210729100300.

58.González-Sancho JM, Larriba MJ, Muñoz A. Wnt and vitamin D at the crossroads in solid cancer[J]. Cancers (Basel), 2020, 12(11): 3434. DOI: 10.3390/cancers12113434.

59.Martens PJ, Gysemans C, Verstuyf A,et al. Vitamin D's effect on immune function[J]. Nutrients, 2020, 12(5): 1248. DOI: 10.3390/nu12051248.

60.Kraemer AN, Schäfer AL, Sprenger DTL, et al. Impact of dietary vitamin D on immunoregulation and disease pathology in lupus-prone NZB/W F1 mice[J]. Front Immunol, 2022, 13: 933191. DOI: 10.3389/fimmu.2022.933191.

61.Bruce D, Cantorna MT. Intrinsic requirement for the vitamin D receptor in the development of CD8αα-expressing T cells[J]. J Immunol, 2011, 186(5): 2819-2825. DOI: 10.4049/jimmunol.1003444.

62.Dankers W, Colin EM, Van Hamburg JP, et al. Vitamin D in autoimmunity: molecular mechanisms and therapeutic potential[J]. Front Immunol, 2016, 7: 697. DOI: 10.3389/fimmu.2016.00697.

63.Ao T, Kikuta J, Ishii M. The effects of vitamin D on immune system and inflammatory diseases[J]. Biomolecules, 2021, 11(11): 1624. DOI: 10.3390/biom11111624.

64.Vasile M, Corinaldesi C, Antinozzi C, et al. Vitamin D in autoimmune rheumatic diseases: a view inside gender differences[J]. Pharmacol Res, 2017, 117: 228-241. DOI: 10.1016/j.phrs.2016.12.038.

65.Charoenngam N. Vitamin D and rheumatic diseases: a review of clinical evidence[J]. Int J Mol Sci, 2021, 22(19): 10659. DOI: 10.3390/ijms221910659.

66.Ganmaa D, Uyanga B, Zhou X, et al. Vitamin D supplements for prevention of tuberculosis infection and disease[J]. N Engl J Med, 2020, 383(4): 359-368. DOI: 10.1056/NEJMoa1915176.

67.Mily A, Rekha RS, Kamal SM, et al. Oral intake of phenylbutyrate with or without vitamin D3 upregulates the cathelicidin LL-37 in human macrophages: a dose finding study for treatment of tuberculosis[J]. BMC Pulm Med, 2013, 13: 23. DOI: 10.1186/1471-2466-13-23.

68.Xue LN, Xu KQ, Zhang W, et al. Associations between vitamin D receptor polymorphisms and susceptibility to ulcerative colitis and Crohn's disease: a Meta-analysis[J]. Inflamm Bowel Dis, 2013, 19(1): 54-60. DOI: 10.1002/ibd.22966.

69.Reid IR, Bolland MJ, Grey A. Effects of vitamin D supplements on bone mineral density: a systematic review and Meta-analysis[J]. Lancet, 2014, 383(9912): 146-155. DOI: 10.1016/S0140-6736(13)61647-5.

Popular papers
Last 6 months