Welcome to visit Zhongnan Medical Journal Press Series journal website!

Home Articles Vol 34,2025 No.5 Detail

The research progress of siRNA drugs in obesity

Published on May. 29, 2025Total Views: 93 times Total Downloads: 16 times Download Mobile

Author: JIANG Fengxuan LU Qingmiao LU Yibing

Affiliation: Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China

Keywords: siRNA drugs Obesity Weight loss Delivery system

DOI: 10.12173/j.issn.1005-0698.202412001

Reference: JIANG Fengxuan, LU Qingmiao, LU Yibing. The research progress of siRNA drugs in obesity[J]. Yaowu Liuxingbingxue Zazhi, 2025, 34(5): 589-594. DOI: 10.12173/j.issn.1005-0698.202412001.[Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

Obesity is a global health problem, and traditional weight loss therapies are often limited in their effectiveness and prone to accompanying adverse reactions In recent years, it has been found that the use of small interfering RNA (siRNA) technology to target regulation of obesity-related genes can effectively reduce body weight, opening up a new path for weight loss treatment. This review summarizes the mechanisms of action, delivery systems, and clinical progress of novel siRNA-based drugs, focusing on targeting genes such as transforming growth factor/cyclooxygenase, inhibin subunit beta E, and activin receptor-like kinase 7, which achieve precise targeting and enhanced therapeutic efficacy through their respective delivery systems. Meanwhile, this review also points out the drawbacks of existing drugs, including low delivery efficiency, risk of immune activation, and off-target effects.

Full-text
Please download the PDF version to read the full text: download
References

1.Piche ME, Tchernof A, Despres JP. Obesity phenotypes, diabetes, and cardiovascular diseases[J]. Circ Res, 2020, 126(11): 1477-1500. DOI: 10.1161/CIRCRESAHA.120.316101.

2.Drucker DJ, Nauck MA. The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes[J]. Lancet, 2006, 368(9548): 1696-1705. DOI: 10.1016/S0140-6736(06)69705-5.

3.Rubino DM, Greenway FL, Khalid U, et al. Effect of weekly subcutaneous semaglutide vs daily liraglutide on body weight in adults with overweight or obesity without diabetes: the STEP 8 randomized clinical trial[J]. JAMA, 2022, 327(2): 138-150. DOI: 10.1001/jama.2021.23619.

4.Friedrich M, Aigner A. Therapeutic siRNA: state-of-the-art and future perspectives[J]. BioDrugs, 2022, 36(5): 549-571. DOI: 10.1007/s40259-022-00549-3.

5.Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14[J]. Cell, 1993, 75(5): 843-854. DOI: 10.1016/0092-8674(93)90529-y.

6.Rivas FV, Tolia NH, Song JJ, et al. Purified Argonaute2 and an siRNA form recombinant human RISC[J]. Nat Struct Mol Biol, 2005, 12(4): 340-349. DOI: 10.1038/nsmb918.

7.Molyneaux M, Berman B, Xu J, et al. Effect of TGF-β1/COX-2 small interfering RNA combination product (STP705) on cell viability and tumor growth in a human squamous carcinoma xenograft tumor model in nude mice[J]. J Am Acad Dermatol, 2020, 83(6): AB156. DOI: 10.1016/j.jaad.2020.06.712.

8.Alessi MC, Bastelica D, Morange P, et al. Plasminogen activator inhibitor 1, transforming growth factor-beta1, and BMI are closely associated in human adipose tissue during morbid obesity[J]. Diabetes, 2000, 49(8): 1374-1380. DOI: 10.2337/diabetes.49.8.1374.

9.Chan PC, Liao MT, Hsieh PS. The dualistic effect of COX-2-mediated signaling in obesity and insulin resistance[J]. Int J Mol Sci, 2019, 20(13): 3115. DOI: 10.3390/ijms20133115.

10.Lu PY, Li L, Simonenko V. Multi-targeted RNAi therapeutics for scarless wound healing of skin[Z]. Google Patents. 2014.

11.Cao J, Zhong Q, Huang Y, et al. Identification and validation of INHBE and P4HA1 as hub genes in non-alcoholic fatty liver disease[J]. Biochem Biophys Res Commun, 2023, 686: 149180.DOI: 10.1016/j.bbrc.2023.149180.

12.Akbari P, Sosina OA, Bovijn J, et al. Multiancestry exome sequencing reveals INHBE mutations associated with favorable fat distribution and protection from diabetes[J]. Nat Commun, 2022, 13(1): 4844. DOI: 10.1038/s41467-022-32398-7.

13.Springer AD, Dowdy SF. GalNAc-siRNA conjugates: leading the way for delivery of RNAi therapeutics[J]. Nucleic Acid Ther, 2018, 28(3): 109-118. DOI: 10.1089/nat.2018.0736.

14.Arrowhead Pharmaceuticals. Arrowhead Pharmaceuticals' proprietary pulmonary TRiM™ platform achieves high levels of target gene knockdown and long duration of effect[EB/OL]. (2023-04-25) [2025-03-10]. https://arrowheadpharma.com/news-press/arrowhead-pharmaceuticals-proprietary-pulmonary-trim-platform-achieves-high-levels-of-target-gene-knockdown-and-long-duration-of-effect/.

15.Izumi T. The GDF3-ALK7 signaling axis in adipose tissue: a possible therapeutic target for obesity and associated diabetes?[J]. Endocr J, 2023, 70(8): 761-770. DOI: 10.1507/endocrj.EJ23-0112.

16.Arrowhead Pharmaceuticals. Arrowhead pharmaceuticals presents preclinical data on ARO-ALK7 for treatment of obesity[EB/OL]. (2025-02-25) [2025-03-10]. https://arrowheadpharma.com/news-press/arrowhead-pharmaceuticals-presents-preclinical-data-on-aro-alk7-for-treatment-of-obesity/.

17.Akbari P, Gilani A, Sosina O, et al. Sequencing of 640,000 exomes identifies GPR75 variants associated with protection from obesity[J]. Science, 2021, 373(6550): eabf8683. DOI: 10.1126/science.abf8683.

18.Hossain S, Gilani A, Pascale J, et al. Gpr75-deficient mice are protected from high-fat diet-induced obesity[J]. Obesity (Silver Spring), 2023, 31(4): 1024-1037. DOI: 10.1002/oby.23692.

19.Softic S, Stanhope KL, Boucher J, et al. Fructose and hepatic insulin resistance[J]. Crit Rev Clin Lab Sci, 2020, 57(5): 308-322.DOI: 10.1080/10408363.2019.1711360.

20.Park SH, Fadhul T, Conroy LR, et al. Knockdown of ketohexokinase versus inhibition of its kinase activity exert divergent effects on fructose metabolism[J]. JCI Insight, 2024, 9(23): e184396. DOI: 10.1172/jci.insight.184396.

21.Winther JB, Holst JJ. Glucagon agonism in the treatment of metabolic diseases including type 2 diabetes mellitus and obesity[J]. Diabetes Obes Metab, 2024, 26(9): 3501-3512. DOI: 10.1111/dom.15693.

22.Sammons MF, Lee EC. Recent progress in the development of small-molecule glucagon receptor antagonists[J]. Bioorg Med Chem Lett, 2015, 25(19): 4057-4064. DOI: 10.1016/j.bmcl.2015.07.092.

23.van Dongen MG, Geerts BF, Morgan ES, et al. First proof of pharmacology in humans of a novel glucagon receptor antisense drug[J]. J Clin Pharmacol, 2015, 55(3): 298-306. DOI: 10.1002/jcph.396.

24.Hashemi M, Parhiz BH, Hatefi A, et al. Modified polyethyleneimine with histidine-lysine short peptides as gene carrier[J]. Cancer Gene Ther, 2011, 18(1): 12-19. DOI: 10.1038/cgt.2010.57.

25.Chou ST, Leng Q, Scaria P, et al. Selective modification of HK peptides enhances siRNA silencing of tumor targets in vivo[J]. Cancer Gene Ther, 2011, 18(10): 707-716. DOI: 10.1038/cgt.2011.40.

26.Huang J, Xiao K. Nanoparticles-based strategies to improve the delivery of therapeutic small interfering RNA in precision oncology[J]. Pharmaceutics, 2022, 14(8): 1586. DOI: 10.3390/pharmaceutics14081586.

27.Fazoli RT, Drager LF, Kalil-Filho R, et al. RNA interference therapy in cardiology: will new targets improve therapeutic goals?[J]. Drugs Context, 2024, 13: 2024-3-1. DOI: 10.7573/dic.2024-3-1.

28.Maraganore J. Reflections on alnylam[J]. Nat Biotechnol, 2022, 40(5): 641-650. DOI: 10.1038/s41587-022-01304-3.

29.Maurer MS, Kale P, Fontana M, et al. Patisiran treatment in patients with transthyretin cardiac amyloidosis[J]. N Engl J Med, 2023, 389(17): 1553-1565. DOI: 10.1056/NEJMoa2300757.

30.窦德虎, 王陈, 鲁静, 等. N-乙酰半乳糖胺偶联小干扰RNA类药物的非临床毒性研究进展[J]. 药物评价研究, 2023, 46(12): 2709-2716. [Dou DH, Wang C, Lu J, et al. Advances in nonclinical toxicity studies of GalNAc-conjugated small interfering RNA therapeutics[J]. Drug Evaluation Research, 2023, 46(12): 2709-2716.] DOI: 10.7501/j.issn.1674-6376.2023.12.028.

31.O'Donoghue ML, Rosenson RS, Gencer B, et al. Small interfering RNA to reduce lipoprotein(a) in cardiovascular disease[J]. N Engl J Med, 2022, 387(20): 1855-1864. DOI: 10.1056/NEJMoa2211023.

32.Gao Y, Liu XL, Li XR. Research progress on siRNA delivery with nonviral carriers[J]. Int J Nanomedicine, 2011, 6: 1017-1025. DOI: 10.2147/IJN.S17040.

33.Ali Zaidi SS, Fatima F, Ali Zaidi SA, et al. Engineering siRNA therapeutics: challenges and strategies[J]. J Nanobiotechnology, 2023, 21(1): 381. DOI: 10.1186/s12951-023-02147-z.

34.俞恬, 刘少华, 魏安华, 等. 胰高血糖素样肽1受体激动剂治疗合并超重或肥胖的2型糖尿病的疗效和安全性的Meta分析[J]. 药物流行病学杂志, 2024, 33(5): 519-538. [Yu T, Liu SH, Wei AH, et al. A Meta-analysis of the efficacy and safety of glucagon-like peptide-1 receptor agonists in the treatment of type 2 diabetes mellitus with comorbid overweight or obesity[J]. Chinese Journal of Pharmacoepidemiology, 2024, 33(5): 519-538.]DOI: 10.12173/j.issn.1005-0698.202306027.

35.Rosenson RS, Lopez JAG, Gaudet D, et al. Olpasiran, oxidized phospholipids, and systemic inflammatory biomarkers: results from the OCEAN(a)-DOSE Trial[J]. JAMA Cardiol, 2025, 2025: e245433. DOI: 10.1001/jamacardio.2024.5433.

Popular papers
Last 6 months