Objective Based on the US Food and Drug Administration (FDA) adverse event Reporting System (FAERS), to explore the signal of adverse events of basiliximab in solid organ transplantation, and to provide reference for its clinical safety.
Methods The adverse drug event (ADE) signals of basiliximab in solid organ transplantation from the first quarter of 2004 to the second quarter of 2024 were retrospectively analyzed in the FAERS database of the FDA. The reporting odds ratio (ROR) method and Bayesian confidence propagation neural network (BCPNN) method were used for signal mining.
Results A total of 1,581 ADE reports related to the use of basiliximab were obtained, involving 27 system/organ classifications. A total of 460 ADE signals were identified. The top 5 PT signals in terms of report frequency were mainly elevated serum creatinine, fever, cytomegalovirus infection, decreased hemoglobin, and decreased lymphocyte count. The top 5 PT signals in terms of signal intensity were mainly cytomegalovirus infection, elevated serum creatinine, decreased lymphocyte count, increased neutrophil count, and thrombotic microangiopathy. New ADE signals identified included decreased lymphocyte count, thrombotic microangiopathy, eye organ diseases, Kaposi's sarcoma, elevated blood lactate dehydrogenase, elevated transaminases, and shock.
Conclusion Data mining using FAERS database is helpful to find new ADE signals of basiliximab in solid organ transplantation. Clinicians should focus on new severe ADE signals such as coagulation function, ocular organ diseases, elevated transaminase, shock and so on.
1.Kasiske BL, Zeier MG, Chapman JR, et al. KDIGO clinical practice guideline for the care of kidney transplant recipients: a summary[J]. Kidney Int, 2010, 77(4): 299-311. DOI: 10.1038/ki.2009.377.
2.石炳毅, 袁铭. 中国肾移植受者免疫抑制治疗指南(2016版)[J]. 器官移植, 2016, 7(5): 327-331. [Shi BY, Yuan M. Guidelines for immunosuppressive therapy in Chinese kidney transplant recipients (2016 edition)[J]. Organ Transplantation, 2016, 7(5): 327-331.] DOI: 10.3969/j.issn.1674-7445.2016. 05.001.
3.中华医学会器官移植学分会. 中国肝移植免疫抑制治疗与排斥反应诊疗规范(2019版)[J]. 器官移植, 2021, 12(1): 8-14, 28.[Branch of Organ Transplantation, Chinese Medical Association. Diagnosis and treatment specification for immunosuppresive therapy and rejection of liver transplantation in China (2019 edition)[J]. Organ Transplantation, 2021, 12(1): 8-14, 28.] DOI: 10.3969/j.issn.1674-7445.2021.01.002.
4.Hong SY, Kim YS, Jin K, et al. The comparative efficacy and safety of basiliximab and antithymocyte globulin in deceased donor kidney transplantation: a multicenter cohort study[J]. Kidney Res Clin Pract, 2023, 42(1):138-148.DOI: 10.23876/j.krcp.21.159.
5.Hellemans R, Bosmans JL, Abramowicz D. Induction therapy for kidney transplant recipients: do we still need anti-IL2 receptor monoclonal antibodies?[J]. Am J Transplan, 2017, 17(1): 22-27. DOI: 10.1111/ajt.13884.
6.Rindi LV, Zaçe D, Braccialarghe N, et al. Drug-induced progressive multifocal leukoencephalopathy (PML): a systematic review and meta-analysis[J]. Drug Saf, 2024, 47(4): 333-354. DOI: 10.1007/s40264-023-01383-4.
7.Melis M, Biagi C, Småbrekke L, et al. Drug-induced progressive multifocal leukoencephalopathy: a comprehensive analysis of the WHO adverse drug reaction database[J]. CNS Drugs, 2015, 29: 879-891. DOI: 10.1007/s40263-015-0286-3.
8.Balcerac A, Bihan K, Lebrun-Vignes B, et al. Drug-associated hyperammonaemia: a Bayesian analysis of the WHO Pharmacovigilance Database[J]. Ann Intensive Care, 2022, 12(1): 55. DOI: 10.1186/s13613-022-01026-4.
9.Zhou Q, Du Z, Qu K, et al. Adverse events of epidiolex: a real-world drug safety surveillance study based on the FDA adverse event reporting system (FAERS) database[J]. Asian J Psychiatr, 2023, 90: 103828. DOI: 10.1016/j.ajp.2023.103828.
10.刘姗姗, 陈果, 刘笑, 等. 基于FAERS数据库的加卡奈珠单抗不良事件信号挖掘与分析[J]. 药物流行病学杂志, 2024, 33(8): 860-868. [Liu SS, Chen G, Liu X, et al. Signal mining and analysis for adverse drug events of galcanezumab basedon FAERS database[J]. Chinese Journal of Pharmacoepidemiology, 2024, 33(8): 860-868.] DOI: 10.12173/j.issn.1005-0698.202404018.
11.罗帮龙, 周燕萍, 苏锐. 基于FAERS数据库对ALK抑制剂相关眼部不良事件信号的挖掘与分析[J]. 药物流行病学杂志, 2024, 33(7): 753-759. [Luo BL, Zhou YP, Su R. Mining and analysis for ocular adverse event signals induced by ALK inhibitors based on FAERS database[J]. Chinese Journal of Pharmacoepidemiology, 2024, 33(7): 753-759.] DOI: 10.12173/j.issn.1005-0698.202404003.
12.经纬俊, 彭苗苗, 葛卫红. 基于FAERS数据库的替莫唑胺不良事件信号挖掘与分析[J]. 中国药师, 2024, 27(2): 255-263. [Jing WJ, Peng MM, Ge WH. Signal mining and analysis of temozolomide adverse events based on FAERS datadase[J]. China Pharmacist, 2024, 27(2): 255-263.] DOI: 10.12173/j.issn.1008-049X.202311238.
13.魏安华, 曾露, 王璐, 等. 基于FAERS数据库的替诺福韦二吡呋酯和丙酚替诺福韦不良事件分析及肾脏安全性比较[J]. 药物流行病学杂志, 2023, 32(12): 1362-1370. [Wei AH, Zeng L, Wang L, et al. Adverse event analysis and renal safety comparison of tenofovir disoproxil and tenofovir alafenamide based on FAERS database[J]. Chinese Journal of Pharmacoepidemiology, 2023, 32(12): 1362-1370.] DOI: 10.19960/j.issn.1005-0698.202312006.
14.胡婕, 姜秋, 毛凯丽, 等. 基于FAERS数据库的维立西呱不良事件信号挖掘及高龄患者特征分析[J]. 药学前沿, 2025, 29(2): 311-317. [Hu J, Jiang Q, Mao KL, et al. Signal mining of vericiguat-related adverse events and characteristic analysis of elderly patients based on FAERS database[J]. Frontiers in Pharmaceutical Sciences, 2025, 29(2): 311-317.] DOI: 10.12173/j.issn.2097-4922.202412055.
15.Bate A, Lindquist M, Edwards IR, et al. A Bayesian neural network method for adverse drug reaction signal generation [J]. Eur J Clin Pharmacol, 1998, 54(4): 315-321. DOI: 10.1007/s002280050466.
16.张千, 颜明明, 赵晖, 等. 基于FAERS数据库芬戈莫德在多发性硬化患者中的肿瘤风险信号挖掘[J]. 药物流行病学杂志, 2023, 32(9): 961-968. [Zhang Q, Yan MM, Zhao H, et al. Data mining of cancer risk associated with fingolimod in multiple sclerosispatients: based on FAERS database[J]. Chinese Journal of Pharmacoepidemiology, 2023, 32(9): 961-968.] DOI: 10.19960/j.issn.1005-0698.202309001.
17.Zheng R, Zhang S, Zeng H, et al. Cancer incidence and mortality in China, 2016[J]. J Natl Cancer Cent, 2022, 2(1): 1-9. DOI: 10.1016/j.jncc.2022.02.002.
18.姜帆, 付振涛, 鹿子龙, 等. 2012—2022年山东省肝癌发病与死亡趋势及其年龄-时期-队列分析[J]. 中华肿瘤防治杂志, 2024, 31(5): 280-291. [Jiang F, Fu ZT, Lu ZL, et al. Analysis for incidence and mortality trend and age period-cohort of liver cancerin Shandong province from 2012 to 2022[J]. Chinese Journal of Cancer Prevention and Treatment, 2024, 31(5): 280-291.] DOI: 10.16073/j.cnki.cjcpt.2024.05.07.
19.彭丹莉, 佘欣, 毛国飞, 等. 1990—2019年中国肝癌发病与死亡年龄-时期-队列模型分析及预测[J]. 现代医学, 2024, 52(1): 102-107. [Peng DL, She X, Mao GF, et al. Analysis and prediction of age-period-cohort model of incidence anddeath of liver cancer in China from 1990 to 2019[J]. Modern Medicine, 2024, 52(1): 102-107.] DOI: 10.3969/j.issn.1671-7562- 2024.01.015.
20.陈磊, 徐杰茹, 王冕, 等. 1990—2019年中国肾癌死亡趋势及其年龄-时期-队列分析[J]. 中华疾病控制杂志, 2021, 25(9): 1026-1033, 1111. [Chen L, Xu JR, Wang M, et al. Analysis for mortality trend and age period-cohort of kidney cancer in China from 1990 to 2019[J]. Chinese Journal of Disease Control & Prevention, 2021, 25(9): 1026-1033, 1111.] DOI: 10.16462/j.cnki.zhjbkz.2021.09.007.
21.Hashim M, Alsebaey A, Ragab A, et al. Efficacy and safety of basiliximab as initial immunosuppression in liver transplantation: a single center study[J]. Ann Hepatol, 2020, 19(5): 541-545. DOI: 10.5604/01.3001.0012.2246.
22.Huang HF, Zhou JY, Xie WQ, et al. Basiliximab versus rabbit antithymocyte globulin as induction therapy for living-related renal transplantation: a single-center experience[J]. Int Urol Nephrol, 2016, 48: 1363-1370. DOI: 10.1007/s11255-016-1307-y.
23.Watanabe T, Yanase M, Seguchi O, et al. Influence of induction therapy using basiliximab with delayed tacrolimus administration in heart transplant recipients-comparison with standard tacrolimus-based triple immunosuppression[J]. Circ J, 2020, 84(12): 2212-2223. DOI: 10.1253/CIRCJ.CJ-20-0164.
24.崔涛. 巴利昔单抗应用于儿童肝移植的前瞻性随机对照研究[D]. 天津: 天津医科大学, 2021. DOI: 10.27366/d.cnki.gtyku.2021.001348.
25.IIlyas M, Colegio OR, Kaplan B, et al. Cutaneous toxicities from transplantation-related medications[J]. Am J Transplant, 2017, 17(11): 2782-2789. DOI: 10.1111/ajt.14337.
26.Holzhauser L, Norris M, Molina M, et al. A heart transplant center experience with basiliximab induction strategies: a double edged sword?[J]. Clin Transplant, 2024, 38(4): e15307. DOI: 10.1111/ctr.15307.
27.Kuczaj A, Warwas S, Zakliczyński M, et al. Does the induction immunotherapy (basiliximab) influence the early acute cellular rejection index after orthotopic heart transplantation?-Preliminary assessment report[J]. Transpl Immunol, 2023, 81: 101937. DOI: 10.1016/j.trim.2023.101937.
28.董博清, 王婧雯, 毕焕京, 等. 基于FAERS数据库的儿童实体器官移植受者应用他克莫司相关药物不良事件的研究[J]. 器官移植, 2024, 15(4): 581-590. [Dong BQ, Wang JW, Bi HJ, et al. Study of adverse drug events related to tacrolimus in pediatric solid organ transplant recipients based on FAERS database[J]. Organ Transplantation, 2024, 15(4): 581-590.] DOI: 10.3969/j.issn.1674-7445.2024031.
29.Yao X, Weng G, Wei J, et al. Basiliximab induction in kidney transplantation with donation after cardiac death donors[J]. Exp Ther Med, 2016, 11(6): 2541-2546. DOI: 10.3892/etm.2016. 3238.
30.López-Abente J, Martínez-Bonet M, Bernaldo-de-Quirós E, et al. Basiliximab impairs regulatory T cell (TREG) function and could affect the short-term graft acceptance in children with heart transplantation[J]. Sci Rep, 2021, 11(1): 827. DOI: 10.1038/s41598-020-80567-9.