Objective To study the effect of Oviductus Ranae (OR) on gut microbiota of rats based on macrogenomic technology, and to characterize the efficacy of OR by histological techniques.
Methods Male SD rats were randomly divided into the control group and the OR group. Rats in the OR group were gavaged daily with 200 mg·kg-1 dose of OR homogenate, while rats in the control group were gavaged with an equal volume of saline. After 14 days, rat feces were collected for macro-genome sequencing, and the sequencing results were subjected to gene prediction, abundance analysis, species annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional annotation.
Results OR significantly increased the relative abundance of Actinobacteria at the phylum level and the class level (P<0.05), and Bifidobacteriales at the order level (P<0.05). There were differences in the Beta diversity of the intestinal flora of the two groups of rats at the phylum and genus levels. Linear discriminant analysis found 35 significantly different bacteria between two groups. The KEGG functional annotation results showed that most genes were annotated to metabolic pathways at the Level 1. The analysis of differences between groups showed that the OR group annotated the relative abundance of pathways related to the immune system, environmental adaptation and cancers changed.
Conclusion Altering the relative abundance and diversity of rat gut microbiota and modulating lipid and amino acid metabolic pathways may be potential mechanisms for OR nutritional care and disease treatment.
1.中国药典2020年版. 一部[S]. 2020: 247.
2.Zhang Y, Wang Y, Li M, et al. Traditional uses, bioactive constituents, biological functions, and safety properties of Oviductus Ranae as functional foods in China[J]. Oxid Med Cell Longev, 2019, 2019: 4739450. DOI: 10.1155/2019/4739450.
3.郭宪一, 范红艳. 林蛙油的药理作用研究进展[J]. 吉林医药学院学报, 2020, 41(3): 209-211. [Guo XY, Fan HY. Progress of research on the pharmacological effects of forest frog oil[J]. Journal of Jilin College of Medicine, 2020, 41(3): 209-211.] DOI: 10.13845/j.cnki.issn1673-2995.2020.03.022.
4.姜大成, 高雅, 肖井雷, 等. 本草辨误——哈士蟆与《本草图经》山蛤渊源考证[J]. 中药材, 2021, 44(6): 1516-1521. [Jiang DC, Gao Y, Xiao JL, et al. The origin of the mountain clam in the Materia Medica and the Materia Medica Tujing[J]. Chinese Medicinal Materials, 2021, 44(6): 1516-1521.] DOI: 10.13863/j.issn1001-4454. 2021.06.041.
5.逯通, 周博宇, 孟令仪, 等. 人参、林蛙油的营养功效研究进展[J]. 中国卫生工程学, 2019, 18(6): 958-960. [Lu T, Zhou BY, Meng LY, et al. Research progress on the nutritional efficacy of ginseng and forest frog oil[J]. China Health Engineering, 2019, 18(6): 958-960.] DOI: 10.19937/j.issn.1671-4199.2019.06.064.
6.张傲, 张悦, 陈缘, 等. 东北林蛙油研究进展[J]. 养殖与饲料, 2020, (1): 68-71. [Zhang A, Zhang Y, Chen Y, et al. Progress of research on northeastern forest frog oil[J]. Farming and Feeding, 2020, (1): 68-71.] DOI: 10.13300/j.cnki.cn42-1648/s.2020.01.025.
7.Teng M, Zhao X, Wang C, et al. Polystyrene nanoplastics toxicity to zebrafish: dysregulation of the brain-intestine-microbiota axis[J]. ACS Nano, 2022, 16(5): 8190-8204. DOI: 10.1021/acsnano.2c01872.
8.Zhang HY, Tian JX, Lian FM, et al. Therapeutic mechanisms of traditional Chinese medicine to improve metabolic diseases via the gut microbiota[J]. Biomed Pharmacother, 2021, 133: 110857. DOI: 10.1016/j. biopha.2020.110857.
9.Zhang S, Lin L, Liu W, et al. Shen-Ling-Bai-Zhu-San alleviates functional dyspepsia in rats and modulates the composition of the gut microbiota[J]. Nutr Res, 2019, 71: 89-99. DOI: 10.1016 /j.nutres.2019.10.001.
10.Wu C, Zhao Y, Zhang Y, et al. Gut microbiota specifically mediates the anti-hypercholesterolemic effect of berberine (BBR) and facilitates to predict BBR's cholesterol-decreasing efficacy in patients[J]. J Adv Res, 2022, 37: 197-208. DOI: 10.1016/j.jare.2021.07.011.
11.Yin S, Sun C, Ji Y, et al. Herbal medicine WangShiBaoChiWan improves gastrointestinal health in mice via modulation of intestinal tight junctions and gut microbiota and inhibition of inflammation[J]. Biomed Pharmacother, 2021, 138: 111426. DOI: 10.1016/j.biopha. 2021.111426.
12.Gong X, Li X, Bo A, et al. The interactions between gut microbiota and bioactive ingredients of traditional Chinese medicines: a review[J]. Pharmacol Res, 2020, 157: 104824. DOI: 10.1016/j.phrs.2020.104824.
13.Chen YZ, Yuan MY, Chen YL, et al. The gut microbiota and traditional Chinese medicine:a new clinical frontier on cancer[J]. Curr Drug Targets, 2021, 22(11): 1222-1231. DOI: 10.2174/1389450122666210412141304.
14.Lloyd-Price J, Mahurkar A, Rahnavard G, et al. Strains, functions and dynamics in the expanded Human Microbiome Project[J]. Nature, 2017, 550(7674): 61-66. DOI: 10.1038/nature23889.
15.New FN, Brito IL. What is metagenomics teaching us, and what is missed?[J]. Annu Rev Microbiol, 2020, 74: 117-135. DOI: 10.1146/annurev-micro-012520-072314.
16.黄继汉, 黄晓晖, 陈志扬, 等. 药理试验中动物间和动物与人体间的等效剂量换算[J]. 中国临床药理学与治疗学, 2004, 9(9): 1069-1072. [Huang JH, Huang XH, Chen ZY, et al. Equivalent dose conversion between animals and between animals and humans in pharmacological tests[J]. Chinese Clinical Pharmacology and Therapeutics, 2004, 9(9): 1069-1072.] DOI: 10.3969/j.issn.1009-2501.2004.09.026.
17.成金乐, 赖智填, 彭丽华. 中药破壁饮片研究[J]. 世界科学技术-中医药现代化, 2014, 16(2): 254-262. [Cheng JL, Lai ZF, Peng LH. Research on wall-broken drinking tablets of Chinese medicine[J]. World Science and Technology - Modernization of Chinese Medicine, 2014, 16(2): 254-262.] DOI: 10.11842/wst.2014.02.008.
18.Barka EA, Vatsa P, Sanchez L, et al. Taxonomy, physiology, and natural products of actinobacteria[J]. Microbiol Mol Biol Rev, 2016, 80(1): 1-43. DOI: 10.1128/MMBR.00019-15.
19.Rivière A, Gagnon M, Weckx S, et al. Mutual cross-feeding interactions between bifidobacterium longum subsp. longum NCC2705 and Eubacterium rectale ATCC 33656 explain the bifidogenic and butyrogenic effects of arabinoxylan oligosaccharides[J]. Appl Environ Microbiol, 2015, 81(22): 7767-7781. DOI: 10.1128/AEM.02089-15.
20.Kim JH, Kim Y, Kim YJ, et al. Conjugated linoleic acid: potential health benefits as a functional food ingredient[J]. Annu Rev Food Sci Technol, 2016, 7: 221-244. DOI: 10.1146/annurev-food-041715-033028.
21.Hardy H, Harris J, Lyon E, et al. Probiotics, prebiotics and immunomodulation of gut mucosal defences: homeostasis and immunopathology[J]. Nutrients, 2013, 5(6): 1869-1912. DOI: 10.3390/nu5061869.
22.Tang S, Xin Y, Ma Y, et al. Screening of microbes associated with swine growth and fat deposition traits across the intestinal tract[J]. Front Microbiol, 2020, 11: 586776. DOI: 10.3389/fmicb.2020.586776.