Pharmacoepidemiology is an interdisciplinary discipline that applies epidemiological research methods to evaluate the application and effect of drugs within population. Standardizing pharmacoepidemiological research methods is crucial for ensuring the quality of research and promoting the development of the discipline. The Pharmacoepidemiology Professional Committee of Chinese Pharmaceutical Association developed the Guide on Methodological Standards in Pharmacoepidemiology (1st edition), in 2019, but has not been updated in over five years. Other, countries/regions such as Europe, America, Japan and South Korea have made a lot of progress in developing and updating the guidelines. Therefore, the rapid development of pharmacoepidemiology in our country and the growing need to align with international standards make it essential to update the guidelines. The second edition of the guidelines was developed through a process that included systematic reviews, practical surveys, and multidisciplinary collaboration. Compared with the first edition, the updated version has made many important changes in research design, data sources, specific application scenarios and more, and added new contents such as the application of artificial intelligence. The purpose of this paper is to emphasize the necessity of updating the guidelines, selecting important changes and formulating interpretation plans. It aims to provide references for relevant professionals to comprehensively understand and apply the new guidelines, and to promote the standardized development and quality of pharmacoepidemiologic research in our country, further advancing the field.
1. Sabate M, Montane E. Pharmacoepidemiology: an overview[J]. J Clin Med, 2023, 12(22): 7033. DOI: 10.3390/jcm12227033.
2. Davis KAS, Farooq S, Hayes JF, et al. Pharmacoepidemiology research: delivering evidence about drug safety and effectiveness in mental health[J]. Lancet Psychiatry, 2020, 7(4): 363-370. DOI: 10.1016/S2215-0366(19)30298-6.
3. 中国药学会药物流行病学专业委员会. 中国药物流行病学研究方法学指南(T/CPHARMA 002-2019)[J]. 中华流行病学杂志, 2019, 40(10): 1180-1185. DOI: 10.3760/cma.j.issn.0254-6450.2019.10.002.
4. The European Network of Centres for Pharmacoepidemiology and Pharmacovililance (ENCEPP). Guide on methodological standards in pharmacoepidemiology (revision 11) [EB/OL]. (2023-07-13) [2024-05-04]. https://encepp.europa.eu/encepp-toolkit/methodological-guide_en.
5. 胥洋, 丁呈怡, 卓琳, 等. 《药物流行病学研究方法学指南》团体标准的制定过程[J]. 药物流行病学杂志, 2019, 28(10): 631-635. [Xu Y, Ding CY, Zhuo L, et al. Developing process of 'Guide on methodological standards in pharmacoepidemiology'[J].Chinese Journal of Pharmacoepidemiology, 2019, 28(10): 631-635.] DOI: 10.19960/j.cnki.issn1005-0698.2019.10.001.
6. Bourke A, Dixon WG, Roddam A, et al. Incorporating patient generated health data into pharmacoepidemiological research[J]. Pharmacoepidemiol Drug Saf, 2020, 29(12): 1540-1549. DOI: 10.1002/pds.5169.
7. Uddin MJ, Groenwold RH, Ali MS, et al. Methods to control for unmeasured confounding in pharmacoepidemiology: an overview[J]. Int J Clin Pharm, 2016, 38(3): 714-723. DOI: 10.1007/s11096-016-0299-0.
8. Sun JW, Wang R, Li D, et al. Use of linked databases for improved confounding control: considerations for potential selection bias[J]. Am J Epidemiol, 2022, 191(4): 711-723. DOI: 10.1093/aje/kwab299.
9. Hempenius M, Luijken K, De Boer A, et al. Quality of reporting of drug exposure in pharmacoepidemiological studies[J]. Pharmacoepidemiol Drug Saf, 2020, 29(9): 1141-1150. DOI: 10.1002/pds.5020.
10. Langan SM, Schmidt SA, Wing K, et al. The reporting of studies conducted using observational routinely collected health data statement for pharmacoepidemiology (RECORD-PE)[J]. BMJ, 2018, 363: k3532. DOI: 10.1136/bmj.k3532.
11. U.S. Food and Drug Administration. Good pharmacovigilance practices and pharmacoepidemiologic assessment[EB/OL].(2005-03) [2024-05-04]. https://www.fda.gov/media/71546/download.
12. U.S. Food and Drug Administration. Best practices for conducting and reporting pharmacoepidemiologic safety studies using electronic healthcare data sets[EB/OL]. (2013-05) [2024-05-04]. https://www.fda.gov/media/79922/download.
13. European Medicines Agency. Guidance for the format and content of the protocol of non-interventional post-authorisation safety studies[EB/OL]. (2012-09-26) [2024-05-04]. https://www.ema.europa.eu/system/files/documents/other/wc500133174_en.pdf.
14. European Medicines Agency. Guidance for the format and content of the final study report of non-interventional post-authorisation safety studies[EB/OL]. (2013-01-23) [2024-05-04]. https://www.ema.europa.eu/system/files/documents/regulatory-procedural-guideline/wc500137939_en.pdf.
15. European Medicines Agency. Guideline on good pharmacovigilance practices (GVP) module VIII-post-authorisation safety studies (Rev 3) [EB/OL]. (2017-10-09) [2024-05-04]. https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-good-pharmacovigilance-practices-gvp-module-viii-post-authorisation-safety-studies-rev-3_en.pdf.
16. European Medicines Agency. Guideline on registry-based studies[EB/OL]. (2021-10-22) [2024-05-04]. https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-registry-based-studies_en.pdf-0.
17. British Medical Association. The SAMM guidelines: Guidelines for company-sponsored safety assessment of marketed medicines[J]. Pharmacoepidemiol Drug Saf, 1994, 3(1): 1-4. DOI: 10.1002/pds.2630030103.
18. Medicines and Healthcare Products Regulatory Agency. Exceptions and modifications to the EU guidance on good pharmacovigilance practices that apply to UK marketing authorisation holders and the licensing authority[EB/OL].(2020-12-21) [2024-05-04]. https://assets.publishing.service.gov.uk/media/5fee14e6e90e0776a8d56123/Exceptions_and_modifications_to_the_EU_guidance_on_good_pharmacovigilance_practices_that_apply_to_UK_MAHs_v2.pdf.
19. 国家药品监督管理局药品审评中心. 用于产生真实世界证据的真实世界数据指导原则(试行)[EB/OL]. (2021-04-15) [2024-05-01]. https://www.cde.org.cn/zdyz/domesticinfopage?zdyzIdCODE=7d2e46cea0e459358257760383526e9d.
20. Li J, Tian Y, Li R, et al. Improving prediction for medical institution with limited patient data: leveraging hospital-specific data based on multicenter collaborative research network[J]. Artif Intell Med, 2021, 113: 102024. DOI: 10.1016/j.artmed.2021.102024.
21. 王志飞, 谢雁鸣, 唐健元, 等. 中成药上市后临床有效性研究指南[J]. 中国中药杂志, 2024, 49(3): 842-848. [Wang ZF, Xie YM, Tang JY, et al. Guidelines for post-marketing research on clinical effectiveness of Chinese patent medicines[J]. China Journal of Chinese Materia Medica, 2019, 28(10): 631-635.] DOI: 10.19540/j.cnki.cjcmm.20231013.501.
22. Pharmaceuticals and Medical Devices Agency. Guidelines for the conduct of pharmacoepidemiological studies in drug safety assessment with medical information databases (version 1) [EB/OL]. (2014-03-31) [2024-05-04]. https://www.pmda.go.jp/files/000240951.pdf.
23. Public Policy Committee, International Society of Pharmacoepidemiology. Guidelines for good pharmacoepidemiology practice (GPP)[J]. Pharmacoepidemiol Drug Saf, 2016, 25(1): 2-10. DOI: 10.1002/pds.3891.
24. Jalbert JJ, Ritchey ME, Mi X, et al. Methodological considerations in observational comparative effectiveness research for implantable medical devices: an epidemiologic perspective[J]. Am J Epidemiol, 2014, 180(9): 949-958. DOI: 10.1093/aje/kwu206.
25. Kurz X, Bauchau V, Mahy P, et al. The ADVANCE code of conduct for collaborative vaccine studies[J]. Vaccine, 2017, 35(15): 1844-1855. DOI: 10.1016/j.vaccine.2017.02.039.
26. Desai RJ, Kim SC, Curtis JR, et al. Methodologic considerations for noninterventional studies of switching from reference biologic to biosimilars[J]. Pharmacoepidemiol Drug Saf, 2020, 29(7): 757-769. DOI: 10.1002/pds.4809.
27. Zhan YQ, Chen RF, Zheng QS, et al. Efficacy and safety of Lianhua Qingwen capsules combined with standard of care in the treatment of adult patients with mild to moderate COVID-19 (FLOSAN): protocol for a randomized, double-blind, international multicenter clinical trial[J]. J Thorac Dis, 2023, 15(5): 2859-2872. DOI: 10.21037/jtd-23-281.
28. Zhang C, Xu J, Tang R, et al. Novel research and future prospects of artificial intelligence in cancer diagnosis and treatment[J]. J Hematol Oncol, 2023, 16(1): 114. DOI: 10.1186/s13045-023-01514-5.
29. Zhou Y, Wang Y, Peijnenburg W, et al. Using machine learning to predict adverse effects of metallic nanomaterials to various aquatic organisms[J]. Environ Sci Technol, 2023, 57(46): 17786-17795. DOI: 10.1021/acs.est.2c07039.
30. Liu J, Wang C, Liu S. Utility of ChatGPT in clinical practice[J]. J Med Internet Res, 2023, 25: e48568. DOI: 10.2196/48568.
31. Zhou Y, Tao J, Wang K, et al. Protocol of a prospective and multicentre China teratology birth cohort (CTBC): association of maternal drug exposure during pregnancy with adverse pregnancy outcomes[J]. BMC Pregnancy Childbirth, 2021, 21(1): 593. DOI: 10.1186/s12884-021-04073-0.
32. Caparrotta TM, Dear JW, Colhoun HM, et al. Pharmacoepidemiology: using randomised control trials and observational studies in clinical decision-making[J]. Br J Clin Pharmacol, 2019, 85(9): 1907-1924. DOI: 10.1111/bcp.14024.
33. Bakker E, Plueschke K, Jonker CJ, et al. Contribution of real-world evidence in European Medicines Agency's regulatory decision making[J]. Clin Pharmacol Ther, 2023, 113(1): 135-151. DOI: 10.1002/cpt.2766.