Objective To systematically analyze the research hotspots and development trends of drug resistance mechanisms in renal cell carcinoma (RCC), and to provide a reference for research in this field.
Methods The literature related to drug resistance in treatment of RCC was obtained from Web of Science core collection. CiteSpace software was used for keyword clustering and trend analysis, and VOSviewer software was used for keyword co-occurrence network analysis.
Results In total, 1 392 literature were incorporated, including 736 regarding targeted therapy, 158 in immunotherapy, and 369 in chemotherapy. The overall research trend in this field was on the rise, in which the research on targeted therapy resistance occupies a dominant position, and immunotherapy resistance was a new research direction. Key words in this field were focused on molecular mechanisms of drug resistance, potential signaling pathways, combination therapy, indicators, and novel therapy. The evolution of keywords and theme words suggests that the research tendency of RCC targeted therapy resistance in recent years focuses on the exploration of new mechanisms of drug resistance and the application of multi-target drugs. The research trend of immunotherapy resistance highlights combination therapy, tumor microenvironment, and metastasis correlation. The research trend of chemotherapy resistance focused on pharmacokinetic-related factors, multidrug resistance genes.
Conclusion To provide references for researchers to accurately grasp the research status and development trend of drug resistance in RCC.
1.Siegel RL, Giaquinto AN, Jemal A. Cancer statistics, 2024[J]. CA Cancer J Clin, 2024, 74(1): 12-49. DOI: 10.3322/caac.21820.
2.Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74(3): 229-263. DOI: 10.3322/caac.21834.
3.Mousavi SE, Najafi M, Aslani A, et al. A population-based study on incidence trends of kidney and renal pelvis cancers in the United States over 2000—2020[J]. Sci Rep, 2024, 14(1): 11294. DOI: 10.1038/s41598-024-61748-2.
4.胡明, 范君言, 周雄, 等. 2020年全球肾癌发病与死亡分析[J]. 中华流行病学杂志, 2023, 44(4): 575-580. [Hu M, Fan JY, Zhou X, et al. Global incidence and mortality of renal cell carcinoma in 2020[J]. Chinese Journal of Epidemiology, 2023, 44(4): 575-580.] DOI: 10.3760/cma.j.cn112338-20220624-00558.
5.Zhang L, Ye B, Chen Z, et al. Progress in the studies on the molecular mechanisms associated with multidrug resistance in cancers[J]. Acta Pharm Sin B, 2023, 13(3): 982-997. DOI: 10.1016/j.apsb.2022.10.002.
6.Yang J, Wang K, Yang Z. Treatment strategies for clear cell renal cell carcinoma: past, present and future[J]. Front Oncol, 2023, 13: 1133832. DOI: 10.3389/fonc.2023. 1133832.
7.Astore S, Baciarello G, Cerbone L, et al. Primary and acquired resistance to first-line therapy for clear cell renal cell carcinoma[J]. Cancer Drug Resist, 2023, 6(3): 517-546. DOI: 10.20517/cdr.2023.33.
8.马进原, 郑心怡, 张翠珍, 等. 基于Web of Science的免疫抑制药基因组学研究的文献计量分析[J]. 药物流行病学杂志, 2023, 32(4): 391-403. [Ma JY, Zheng XY, Zhang CZ, et al. Bibliometric analysis of genomics research on immunosuppressive drugs based on Web of Science[J]. Chinese Journal of Pharmacoepidemiology, 2023, 32(4): 391-403.] DOI: 10.19960/j.issn.1005-0698.202304005.
9.安惠霞, 郑心怡, 张翠珍, 等. 结直肠癌靶向及单抗类药物基因组学和不良反应研究的文献计量学分析 [J]. 药物流行病学杂志, 2023, 32(9): 1059-1070. [An HX, Zheng XY, Zhang CZ, et al. Bibliometric analysis of genomics and adverse reactions research on targeted and monoclonal antibody drugs for colorectal cancer[J]. Chinese Journal of Pharmacoepidemiology, 2023, 32(9): 1059-1070.] DOI: 10.19960/j.issn.1005-0698.202309013.
10.李杰, 魏瑞斌. VOSviewer应用现状及其知识基础研究[J]. 农业图书情报学报, 2022, 34(6): 61-71. [Li J, Wei RB. A study on the current application and knowledge base of VOSviewer[J]. Journal of Library and Information Science in Agriculture, 2022, 34(6): 61-71.] DOI: 10.13998/j.cnki.issn1002-1248.21-0843.
11.陈悦, 陈超美, 刘则渊, 等. CiteSpace知识图谱的方法论功能[J]. 科学学研究, 2015, 33(2): 242-253. [Chen Y, Chen CM, Liu ZY, et al. The methodological functions of CiteSpace knowledge mapping[J]. Studies in Science of Science, 2015, 33(2): 242-253.] DOI: 10.16192/j.cnki. 1003-2053.2015.02.009.
12.Sweeney PL, Suri Y, Basu A, et al. Mechanisms of tyrosine kinase inhibitor resistance in renal cell carcinoma[J]. Cancer Drug Resist, 2023, 6(4): 858-873. DOI: 10.20517/cdr.2023.89.
13.Murali R, Gopalakrishnan AV. Molecular insight into renal cancer and latest therapeutic approaches to tackle it: an updated review[J]. Med Oncol, 2023, 40(12): 355. DOI: 10.1007/s12032-023-02225-0.
14.Sharma R, Kadife E, Myers M, et al. Determinants of resistance to VEGF-TKI and immune checkpoint inhibitors in metastatic renal cell carcinoma[J]. J Exp Clin Cancer Res, 2021, 40(1): 186. DOI: 10.1186/s13046-021-01961-3.
15.Bagchi S, Yuan R, Engleman EG. Immune checkpoint inhibitors for the treatment of cancer: clinical impact and mechanisms of response and resistance[J]. Annu Rev Pathol, 2021, 16: 223-249. DOI: 10.1146/annurev-pathol-042020-042741.
16.Passirani C, Vessières A, La Regina G, et al. Modulating undruggable targets to overcome cancer therapy resistance[J]. Drug Resist Updat, 2022, 60: 100788. DOI: 10.1016/j.drup.2021.100788.
17.李益民, 陈鹏, 张俊峰, 等. 靶向药物联合免疫检查点抑制剂治疗晚期肾癌的临床研究进展[J]. 临床合理用药, 2024, 17(27): 178-181. [Li YM, Chen P, Zhang JF, et al. Clinical research progress on targeted drug combined with immune checkpoint inhibitors for the treatment of advanced renal cell carcinoma[J]. Chinese Journal of Clinical Rational Drug Use, 2024, 17(27): 178-181.] DOI: 10.15887/j.cnki.13-1389/r.2024.27.049.
18.Wang Y, Liu X, Gong L, et al. Mechanisms of sunitinib resistance in renal cell carcinoma and associated opportunities for therapeutics[J]. Br J Pharmacol, 2023, 180(23): 2937-2955. DOI: 10.1111/bph.16252.
19.Mikami S, Mizuno R, Kosaka T, et al. Significance of tumor microenvironment in acquiring resistance to vascular endothelial growth factor-tyrosine kinase inhibitor and recent advance of systemic treatment of clear cell renal cell carcinoma[J]. Pathol Int, 2020, 70(10): 712-723. DOI: 10.1111/pin.12984.
20.穆玉慧, 王志鹏, 崔莉莉, 等. 肿瘤微环境调节肿瘤细胞耐药性的研究现状[J]. 中国临床药理学杂志, 2023, 39(11): 1652-1656. [Mu YH, Wang ZP, Cui LL, et al. Current status of research on tumor microenvironment regulation of tumor cell drug resistance[J]. The Chinese Journal of Clinical Pharmacology, 2023, 39(11): 1652-1656.] DOI: 10.13699/j.cnki.1001-6821.2023.11.029.
21.Maacha S, Bhat A A, Jimenez L, et al. Extracellular vesicles-mediated intercellular communication: roles in the tumor microenvironment and anti-cancer drug resistance[J]. Mol Cancer, 2019, 18(1): 55. DOI: 10.1186/s12943-019-0965-7.
22.Dell'atti L, Bianchi N, Aguiari G. New therapeutic interventions for kidney carcinoma: looking to the future[J]. Cancers (Basel), 2022, 14(15): 3616. DOI: 10.3390/cancers14153616.
23.Jeong SU, Hwang HS, Park JM, et al. PD-L1 upregulation by the mTOR pathway in VEGFR-TKI-resistant metastatic clear cell renal cell carcinoma[J]. Cancer Res Treat, 2023, 55(1): 231-244. DOI: 10.4143/crt.2021.1526.
24.Takamori H, Yamasaki T, Kitadai R, et al. Development of drugs targeting hypoxia-inducible factor against tumor cells with VHL mutation: Story of 127 years[J]. Cancer Sci, 2023, 114(4): 1208-1217. DOI: 10.1111/cas.15728.
25.Mossmann D, Park S, Hall MN. mTOR signalling and cellular metabolism are mutual determinants in cancer[J]. Nat Rev Cancer, 2018, 18(12): 744-757. DOI: 10.1038/s41568-018-0074-8.
26.Donehower LA, Soussi T, Korkut A, et al. Integrated analysis of TP53 gene and pathway alterations in the cancer genome atlas[J]. Cell Rep, 2019, 28(5): 1370-1384.e5. DOI: 10.1016/j.celrep.2019.07.001.
27.Miller DR, Thorburn A. Autophagy and organelle homeostasis in cancer[J]. Dev Cell, 2021, 56(7): 906-918. DOI: 10.1016/j.devcel.2021.02.010.
28.Gocher AM, Workman CJ, Vignali DA. Interferon-γ: teammate or opponent in the tumour microenvironment?[J]. Nat Rev Immunol, 2022, 22(3): 158-172. DOI: 10.1038/s41577-021-00566-3.
29.Routy B, Le Chatelier E, Derosa L, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors[J]. Science, 2018, 359(6371): 91-97. DOI: 10.1126/science.aan3706.
30.Beltra JC, Manne S, Abdel-Hakeem MS, et al. Developmental relationships of four exhausted CD8+ T cell subsets reveals underlying transcriptional and epigenetic landscape control mechanisms[J]. Immunity, 2020, 52(5): 825-841. e8. DOI: 10.1016/j.immuni.2020.04.014.
31.Vitale I, Shema E, Loi S, et al. Intratumoral heterogeneity in cancer progression and response to immunotherapy[J]. Nat Med, 2021, 27(2): 212-224. DOI: 10.1038/s41591-021-01233-9.
32.Bukowski K, Kciuk M, Kontek R. Mechanisms of multidrug resistance in cancer chemotherapy[J]. Int J Mol Sci, 2020, 21(9): 3233. DOI: 10.3390/ijms21093233.
33.Rocha CRR, Silva MM, Quinet A, et al. DNA repair pathways and cisplatin resistance: an intimate relationship[J]. Clinics (San Paulo), 2018, 73(suppl 1): e478s. DOI: 10.6061/clinics/2018/e478s.
34.Li Y, Steppi A, Zhou Y, et al. Tumoral expression of drug and xenobiotic metabolizing enzymes in breast cancer patients of different ethnicities with implications to personalized medicine[J]. Sci Rep, 2017, 7(1): 4747. DOI: 10.1038/s41598-017-04250-2.
35.Vasan N, Baselga J, Hyman DM. A view on drug resistance in cancer[J]. Nature, 2019, 575(7782): 299-309. DOI: 10.1038/s41586-019-1730-1.
36.Ippolito MR, Martis V, Martin S, et al. Gene copy-number changes and chromosomal instability induced by aneuploidy confer resistance to chemotherapy[J]. Dev Cell, 2021, 56(17): 2440-2454. e6. DOI: 10.1016/j.devcel.2021.07.006.