Welcome to visit Zhongnan Medical Journal Press Series journal website!

Home Articles Vol 33,2024 No.9 Detail

Signal mining and analysis of adverse events of esketamine based on proportional imbalance method and machine learning algorithms

Published on Oct. 01, 2024Total Views: 1093 times Total Downloads: 369 times Download Mobile

Author: CHEN Xi 1 LIU Chang 1 LING Yi 1 ZHANG Hewei 2 GUO Xiaojing 2

Affiliation: 1. College of Basic Medical Sciences, Naval Medical University, Shanghai 200433, China 2. Department of Army Medical Statistics, Faculty of Medical Services, Naval Medical University, Shanghai 200433, China

Keywords: Esketamine Treatment-resistant depression Adverse drug event Signal detection Disproportional assay Machine learning algorithm FAERS database Pharmacovigilance

DOI: 10.12173/j.issn.1005-0698.202408074

Reference: CHEN Xi, LIU Chang, LING Yi, ZHANG Hewei, GUO XiaojingSignal mining and analysis of adverse events of esketamine based on proportional imbalance method and machine learning algorithms[J].Yaowu Liuxingbingxue Zazhi,2024, 33(9):961-970.DOI: 10.12173/j.issn.1005-0698.202408074.[Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

Objective  To explore and analyse the signals of adverse events of esketamine, and to provide references for rational clinical use of the drug.

Methods The adverse event reports of esketamine from the first quarter of 2019 to the fourth quarter of 2023 in the U.S. Food and Drug Administration Adverse Event Reporting System (FAERS) database were collected. The reporting odds ratio (ROR) method and information component (IC) method in the disproportionality analysis and random forest (RF) algorithm, K-nearest neighbor algorithm and extreme gradient boosting (XGBoost) algorithm in machine learning algorithms were used for signal mining of target medicines respectively. The accuracy of machine learning signal detection results was assessed by the area under the curve (AUC).

Results  A total of 5  247 adverse event records with esketamine as the primary suspect drug were obtained. Using the traditional detection measures of dis-proportionality, 138 positive signal results were detected, 6 new adverse events including anticholinergic syndrome, urinary incontinence, double vision, pyelonephritis, spontaneous pneumothorax, biliary obstruction, were not included in the FDA drug inserts, and it was found that the drug may be more likely to cause cardiovascular problems. The results of the machine learning training showed that XGBoost algorithm and RF algorithm performed moderately well, with AUC means of 0.928 and 0.921, respectively. A total of 4 new potential adverse drug event signals, diplopia, deterioration of general physical health, suicidal ideation and withdrawal syndrome were detected by XGBoost algorithm and RF algorithm.

Conclusion  Esketamine is accompanied by some unknown risks while obtaining significant efficacy and adverse events not mentioned in the specification may occur in clinical practice. Healthcare professionals should be fully alert to the relevant adverse events when applying them in clinical treatment and take timely measures to ensure the safety of the treatment.

Full-text
Please download the PDF version to read the full text: download
References

1. 金柳荫, 司璐佳, 徐文倩, 等. 难治性抑郁症的精神外科治疗新进展[J]. 临床精神医学杂志, 2024, 34(1): 68-70. [Jin LY, Si LJ, Xu WQ, et al. New advances in minimally invasive or noninvasive surgery for refractory depression[J]. Journal of Clinical Psychiatry, 2024, 34(1): 68-70.] DOI: 10.3969/j.issn.1005-3220.2024.01.019.

2. 郑秀艳, 唐诚霞, 刘肇瑞, 等. 首发和复发抑郁症患者临床特征比较[J]. 中国心理卫生杂志, 2024, 38(1): 25-32. [Zheng XY, Tang CX, Liu ZR, et al. Comparison of clinical characteristics between first-episode and relapse of major depressive disorder[J]. Chinese Mental Health Journal, 2024, 38(1): 23-32.] DOI: 10.3696/j.issn.1000- 6729.2024.01.004.

3. 徐蕊, 黄兴兵. 难治性抑郁症非药物治疗新进展[J]. 实用医学杂志, 2024, 40(4): 439-446. [Xu R, Huang XB. Progress of non-pharmacological treatments for treatment-resistant depression[J]. Journal of Practical Medicine, 2024, 40(4): 439-446.] DOI: 10.3969/j/issn.1006-5725. 2024.04.001.

4. 杨可, 彭永保. 艾司氯胺酮用于产后抑郁预防和治疗的研究进展[J]. 现代临床医学, 2024, 50(2): 113-116. [Yang K, Peng YB. Research progress of esketamine for prevention and treatment of postpartum depression[J].Journal of Modern Clinical Medicine, 2024, 50(2): 113-116.] DOI: 10.11851/j.issn.1673-1557.2024.02.009.

5. 刘瑞, 但伶. 艾司氯胺酮的临床研究进展[J]. 中国当代医药, 2023, 30(23): 28-32. [Liu R, Dan L. Clinical research progress of esketamine[J]. China Modern Medicine, 2023, 30(23): 28-32.] DOI: 10.3969/j.issn. 1674-4721.2023.23.007.

6. Jiang Y, Du Z, Shen Y, et al. The correlation of esketamine with specific adverse events: a deep dive into the FAERS database[J/OL]. Eur Arch Psychiatry Clin Neurosci, 1-9. [2023-12-16]. https://doi.org/10.1007/s00406-023-01732-5.

7. 任经天, 王胜锋, 侯永芳, 等. 常用药品不良反应信号检测方法介绍[J]. 中国药物警戒, 2011, 8(5): 294-298. [Ren JT, Wang SF, Hou YF, et al. Common signal detection methods of adverse drug reaction[J]. Chinese Journal of Pharmacovigilance, 2011, 8(5): 294-298.] DOI: 10.3969/j.issn.1672-8629.2011.05.013.

8. 陈友生, 缪健, 梁义敏, 等. 常用药品不良反应信号检测方法研究进展[J]. 中国药物依赖性杂志, 2014, 23(2): 89-92. [Chen YS, Miao J, Liang YM, et al. Research progress on signal detection methods of common adverse drug reactions[J]. Chinese Journal of Drug Dependence, 2014, 23(2): 89-92.] DOI: 10.13936/j.cnki.cjdd1992.2014.02.015.

9. 李苑雅, 张艳, 沈爱宗. 基于自发呈报系统药品不良反应信号检测方法的研究进展[J]. 安徽医药, 2015, 19(7): 1233-1236. [Li YY, Zhang Y, Shen AZ. Research progress in adverse drug reaction signal detection methods based on spontaneous reporting system[J]. Anhui Medical and Pharmaceutical Journal, 2015, 19(7): 1233-1236.] DOI: 10.3969/j.issn.1009-6469.2015.07.003.

10. 叶小飞. 上市后药品不良反应信号检测方法的进展与思考[J]. 海军军医大学学报, 2022, 43(2): 117-122. [Ye  XF. Progress and thinking of signal detection methodology on post-marketing adverse drug reaction surveillance[J]. Academic Journal of Naval Medical University, 2022, 43(2): 117-122.] DOI: 10.16781/j.CN31-2187/R.20211309.

11. 汤榕, 李林贵, 孙维红, 等. 药品不良反应报告常用信号检测方法应用研究[J]. 中国药房, 2012, 23(14): 1309-1311. [Tang R, Li LG, Sun WH, et al. Study on the application of common signal detection methods for adverse drug reaction reports[J]. China Pharmacy, 2012, 23(14): 1309-1311.] DOI: 10.6039/j.issn.1001-0408.2012.14.23.

12. Bae JH, Baek YH, Lee JE, et al. Machine learning for detection of safety signals from spontaneous reporting system data: example of nivolumab and docetaxel[J]. Front Pharmacol, 2020, 11: 602365. DOI: 10.3389/fphar.2020. 602365.

13. Jang MG, Cha S, Kim S, et al. Application of tree-based machine learning classification methods to detect  signals of fluoroquinolones using the Korea adverse event reporting system (KAERS) database[J]. Expert Opin Drug Saf, 2023, 22(7): 629-636. DOI: 10.1080/14740338.2023.2181341.

14. 张新佶, 张天一, 许金芳, 等. 随机森林倾向性评分方法及其在药品不良反应信号检测中的应用[J]. 中国卫生统计, 2016, 33(4): 578-581. [Zhang XJ, Zhang TY, Xu JF, et al. Random forest propensity scores method and its application in drug adverse reaction signal detection[J]. Chinese Journal of Health Statistics, 2016, 33(4): 578581.] DOI: CNKI:SUN:ZGWT.0.2016-04-007.

15. 郑轶, 罗枭, 张朋朋, 等. 基于主动监测系统的免疫检查点抑制剂心肌炎不良反应探索[J]. 中国药物警戒, 2023, 20(6): 634-638. [Zheng Y, Luo X, Zhang PP, et al. Adverse reactions of immune checkpoint inhibitor myocarditis based on active monitoring system[J]. Chinese Journal of Pharmacovigilance, 2023, 20(6): 634-638.] DOI: 10.19803/j.1672-8629.20230106.

16. 田永福, 魏雯静. 基于机器学习算法对STEMI患者院内及1年内心血管不良事件预测体系的研究 [J]. 宁夏医学杂志, 2024, 46(5): 444-447. [Tian YF, Wei WJ. Prediction system of in-hospital and 1-year cardiovascular adverse events in STEMI patients based on machine learning algorithm[J]. Ningxia Medical Journal, 2024, 46(5): 444-447.] DOI: 10.13621/j.1001-5949.2024.05.0444.

17. 陈枭, 郭晓晶, 许金芳, 等. 机器学习方法在FAERS布加替尼不良反应信号检测中的应用[J]. 中国药物警戒, 2023, 20(6): 639-645. [Chen X, Guo XJ, Xu JF, et al. Machine learning method in the detection of adverse drug reaction signals of brigatinib based on FAERS database[J].Chinese Journal of Pharmacovigilance, 2023, 20(6): 639-645.] DOI: 10.19803/j.1672-8629.20220645.

18. 陈亚昆, 门鹏, 王攀. 基于FAERS数据库的4种磷酸二酯酶5抑制剂安全性分析[J]. 中国药物警戒, 2023, 20(6): 691-696. [Chen YK, Men P, Wang P. Safety of four phosphodiesterase 5 inhibitors based on the FAERS database[J]. Chinese Journal of Pharmacovigilance, 2023, 20(6): 691-696.] DOI: 10.19803/j.1672-8629.20230073.

19. Zhai Y, Ye X, Hu F, et al. Cardiovascular toxicity of carfilzomib: the real-world evidence based on the adverse event reporting system database of the FDA, the United States[J]. Front Cardiovasc Med, 2021, 8: 735466. DOI: 10.3389/fcvm.2021.735466.

20. He Z, Lam K, Zhao W, et al. SGLT-2 inhibitors and euglycemic diabetic ketoacidosis/diabetic ketoacidosis in FAERS: a pharmacovigilance assessment[J]. Acta Diabetol, 2023, 60(3): 401-411. DOI: 10.1007/s00592-022-02015-6.

21. Gastaldon C, Schoretsanitis G, Arzenton E, et al. Withdrawal syndrome following discontinuation of 28 antidepressants: pharmacovigilance analysis of 31,688 reports from the WHO spontaneous reporting database[J]. Drug Saf, 2022, 45(12): 1539-1549. DOI: 10.1007/s40264-022-01246-4.

22. Candore G, Juhlin K, Manlik K, et al. Comparison of statistical signal detection methods within and across spontaneous reporting databases[J]. Drug Saf, 2015, 38(6): 577-587. DOI: 10.1007/s40264-015-0289-5.

23. Jung Y, Hu J. A K-fold averaging cross-validation procedure[J]. J Nonparametr Stat, 2015, 27(2): 167-179. DOI: 10.1080/10485252.2015.1010532.

24. 孙亚林, 李永昌, 杜文民, 等. 药物警戒中不相称性测定理论应用问题分析[J]. 药物流行病学杂志, 2009, 18(3): 147-150. [Sun YL, Li YC, Du  WM, et al. Analysis of application of disproportional measures in pharmacovigilance[J]. Chinese Journal of Pharmacoepidemiology, 2009, 18(3): 147-150.] DOI: 1005-0698(2009)03-0147-04.

25. 施昊旻, 燕速, 乔梦梦, 等. 基于机器学习算法的胃癌淋巴结转移预测模型研究[J]. 实用临床医药杂志, 2024, 28(1): 41-47. [Shi HM, Yan S, Qiao MM, et al. Research on gastric cancer lymph node metastasis prediction model based on machine learning algorithms[J].Journal of Clinical Medicine in Practice, 2024, 28(1): 41-47.] DOI: 10.7619/jcmp.20233076.

26. 范可欣, 朱鹏汇, 王云, 等. 基于机器学习算法建立胎母输血综合征预测模型[J]. 临床输血与检验, 2022, 24(4): 427-432. [Fan KX, Zhu PH, Wang Y, et al. The prediction model of fetomaternal hemorrhage was established on machine learning algorithm[J]. Journal of Clinical Transfusion and Laboratory Medicine, 2022, 24(4): 427-432.] DOI: 10.3969/j.issn.1671-2587.2022.04.004.

Popular papers
Last 6 months