The irrational use of narcotic drugs and psychotropic drugs has let to sig-nificant public health issues in Europe and the United States. It is a key challenge in the regulatory work to assess the risk of drug abuse and other irrational use pattern, and to supervise the entire process of the use of narcotic and psychotropic drugs. Over recent years, an increasing number of studies oversea have used machine learning methods to build predictive models to rapidly identify drug abuse and drug use disorders, predict drug dependency, persistent use and other irrational use patterns and adverse effects using real-world data, while Chinese scholars still pay less attention to similar research para-digms. This paper compares the status of research on narcotic and psychotropic drug prediction models, mainly focuses on the related research of opioid drug risk prediction, summarizes the research scenarios and key points of research design, as well as presents considerations on model transformation and regulatory priorities for China, aiming to provide suggestions for the use of machine learning in the field of narcotic and psychotropic drug regulation in China.
1.U.S. Department of Health and Human Services. What is the U.S. Opioid Epidemic?[EB/OL]. (2021-10-27) [2022-10-11]. https://www.hhs.gov/opioids/about-the-epidemic/.
2.Marks C, Carrasco-Escobar G, Carrasco-Hernández R, et al. Methodological approaches for the pre-diction of opioid use-related epidemics in the United States: a narrative review and cross-disciplinary call to action[J]. Transl Res, 2021, 234: 88-113. DOI: 10.1016/j.trsl.2021.03.018.
3.Bharat C, Hickman M, Barbieri S, et al. Big data and predictive modelling for the opioid crisis: existing research and future potential[J]. Lancet Digit Health, 2021, 3(6): e397-e407. DOI: 10.1016/s2589-7500(21)00058-3.
4.Canan C, Polinski JM, Alexander GC, et al. Automatable algorithms to identify nonmedical opioid use using electronic data: a systematic review[J]. J Am Med Inform Assoc, 2017, 24(6): 1204-1210. DOI: 10.1093/jamia/ocx066.
5.Informal Innovation Network: Horizon scanning assessment report - artificial intelligence[EB/OL]. (2021-08-06) [2022-10-22]. http://www.icmra.info/drupal/sites/default/files/202108/horizon_scanning_report_artificial_intelligence.pdf.
6.龚立雄, 张惠霞, 夏旭东. 河南省医用麻醉,精神药物滥用情况分析[J]. 中国药物警戒, 2010, 7(8): 490-492. [Gong LX, Zhang HX, Xia XD. Analysis on abuse situation of medical narcotic and psychotropic drugs in He-nan province[J]. Chinese Journal of Pharmacovigilance, 2010, 7(8): 490-492.] DOI: 10.3969/j.issn.1672- 8629.2010.08.013.
7.国家药品监督管理局. 食品药品监管总局·公安部 国家卫生计生委关于公布麻醉药品和精神药品品种目录的通知[EB/OL]. (2013-11-11) [2022-10-11]. https://www.nmpa.gov.cn/directory/web/nmpa/xxgk/fgwj/gzwj/gzwjyp/20131111120001419.html.
8.满春霞, 邹武捷, 杨淑苹, 等. 麻醉药品和精神药品管制研究Ⅳ——我国麻醉药品和精神药品的管制历程与现状[J]. 中国药房, 2017, 28(1): 5. [Man CX, Zou WJ, Yang SP, et al. Study on narcotics and psychotropic sub-stances control (Part Ⅳ): development and status quo of narcotics and psychotropic substances con-trol in China[J]. China Pharmacy, 2017, 28(1): 5.] DOI: 10.6039/j.issn.1001-0408.2017.01.05.
9.支梦佳, 魏兴梅, 高翔, 等. 我国阿片类镇痛药物临床使用现状分析[J]. 药物流行病学杂志, 2018, 27(6): 400-405. [Zhi MJ, Wei XM, Gao X, et al. Analysis of the clinical use of opioid analgesics in China[J]. Chinese Journal of Pharmacoepidemiology, 2018, 27(6): 400-405.] DOI: 10.19960/j.cnki.issn1005-0698.2018.06.010.
10.Brauer R, Alfageh B, Blais JE, et al. Psychotropic medicine consumption in 65 countries and regions, 2008-19: a longitudinal study[J]. Lancet Psychiatry, 2021, 8(12): 1071-1082. DOI: 10.1016/s2215-0366(21)00292-3.
11.唐海英, 李艳, 马传新. 医疗机构麻醉药品和精神药品使用现状及监管分析[J]. 中国药物滥用防治杂志, 2015, (5): 255-258. [Tang HY, Li Y, Ma CX. Analysis of current use situation of narcotics and psychotropics of medical treatment and administrative department regulatory[J]. Chinese Journal of Drug Abuse Pre-vention and Treatment, 2015(5): 255-258.] DOI: 10.15900/j.cnki.zylf1995.2015.05.002.
12.国家药品监督管理局. 国家药物滥用监测年度报告(2016年)[EB/OL]. (2017-08-11) [2022-10-11]. https://www.nmpa.gov.cn/directory/web/nmpa/xxgk/fgwj/gzwj/gzwjyp/20170811104001233.html.
13.National Collaborating Centre for Mental Health (UK). Drug misuse: Psychosocial interventions[M]. Leicester, UK: British Psychological Society (UK) Press, 2008: 3-21.
14.U.S. Substance Abuse and Mental Health Services Administration, Department of Health & Human Services. Mental health and substance use disorders[EB/OL]. (2022-04-27) [2022-10-11]. https://www.samhsa.gov/find-help/disorders.
15.Cameron CB. A user's guide to computable phenotypes[M]. Excellence NIFHC Oregon Health & Sci-ence University Press, 2016: 13-30.
16.Blackley SV, Macphaul E, Martin B, et al. Using natural language processing and machine learning to identify hospitalized patients with opioid use disorder[J]. AMIA Annu Symp Proc, 2020, 2020: 233-242. https://pubmed.ncbi.nlm.nih.gov/33936395/.
17.Afshar M, Sharma B, Bhalla S, et al. External validation of an opioid misuse machine learning classifier in hospitalized adult patients[J]. Addict Sci Clin Pract, 2021, 16(1): 19. DOI: 10.1186/s13722-021-00229-7.
18.Green CA, Perrin NA, Hazlehurst B, et al. Identifying and classifying opioid-related overdoses: a valida-tion study[J]. Pharmacoepidemiol Drug Saf, 2019, 28(8): 1127-1137. DOI: 10.1002/pds.4772.
19.Prieto JT, Scott K, Mcewen D, et al. The detection of opioid misuse and heroin use from paramedic response documentation: machine learning for improved surveillance[J]. J Med Internet Res, 2020, 22(1): e15645. DOI: 10.2196/15645.
20.Dong X, Rashidian S, Wang Y, et al. Machine learning based opioid overdose prediction using elec-tronic health records[J]. AMIA Annu Symp Proc, 2019, 2019: 389-398. https://pubmed.ncbi.nlm.nih.gov/32308832/.
21.Lo-Ciganic WH, Huang JL, Zhang HH, et al. Evaluation of machine-learning algorithms for predicting opioid overdose risk among medicare beneficiaries with opioid prescriptions[J]. JAMA Netw Open, 2019, 2(3): e190968. DOI: 10.1001/jamanetworkopen.2019.0968.
22.徐建国, 于世英. 麻醉药品和精神药品规范化临床应用与管理[M]. 北京: 人民卫生出版社, 2007: 11-79.
23.Herzig SJ, Anderson TS, Jung Y, et al. Risk factors for opioid-related adverse drug events among older adults after hospital discharge[J]. J Am Geriatr Soc, 2022, 70(1): 228-234. DOI: 10.1111/jgs.17453.
24.Mcdonald DD, Srisopa P. Predictors of serious adverse drug events from opioids: results from the Food and Drug Administration Adverse Events Reporting System[J]. J Am Assoc Nurse Pract, 2021, 33(12): 1207-1215. DOI: 10.1097/jxx.0000000000000545.
25.Sharma V, Kulkarni V, Eurich DT, et al. Safe opioid prescribing: a prognostic machine learning ap-proach to predicting 30-day risk after an opioid dispensation in Alberta, Canada[J]. BMJ Open, 2021, 11(5): e043964.DOI: 10.1136/bmjopen-2020-043964.
26.Chae D, Kim SY, Song Y, et al. Dynamic predictive model for postoperative nausea and vomiting for intravenous fentanyl patient-controlled analgesia[J]. Anaesthesia, 2020, 75(2): 218-226. DOI: 10.1136/bmjopen-2020- 043964.
27.Vunikili R, Glicksberg BS, Johnson KW, et al. Predictive modelling of susceptibility to substance abuse, mortality and drug-drug interactions in opioid patients[J]. Front Artif Intell, 2021, 4: 742723. DOI: 10.3389/frai.2021.742723.
28.Garg S, Taylor J, El Sherief M, et al. Detecting risk level in individuals misusing fentanyl utilizing posts from an online community on Reddit[J]. Internet Interv, 2021, 26: 100467. DOI: 10.1016/j.invent.2021.100467.
29.Sarker A, Deroos A, Perrone J. Mining social media for prescription medication abuse monitoring: a review and proposal for a data-centric framework[J]. J Am Med Inform Assoc, 2020, 27(2): 315-329. DOI: 10.1093/jamia/ocz162.
30.Fodeh SJ, Al-Garadi M, Elsankary O, et al. Utilizing a multi-class classification approach to detect therapeutic and recreational misuse of opioids on Twitter[J]. Comput Biol Med, 2021, 129: 104132. DOI: 10.1016/j.compbiomed.2020.104132.
31.Elsherief M, Sumner SA, Jones CM, et al. Characterizing and identifying the prevalence of web-based misinformation relating to medication for opioid use disorder: machine learning approach[J]. J Med Internet Res, 2021, 23(12): e30753. DOI: 10.2196/30753.
32.Kalyanam J, Katsuki T, RG Lanckriet G, et al. Exploring trends of nonmedical use of prescription drugs and polydrug abuse in the Twittersphere using unsupervised machine learning[J]. Addict Behav, 2017, 65: 289-295. DOI: 10.1016/j.addbeh.2016.08.019.
33.Mackey T, Kalyanam J, Klugman J, et al. Solution to detect, classify, and report illicit online marketing and sales of controlled substances via twitter: using machine learning and web forensics to combat digital opioid access[J]. J Med Internet Res, 2018, 20(4): e10029. DOI: 10.2196/10029.
34.Singh K, Murali A, Stevens H, et al. Predicting persistent opioid use after surgery using electronic health record and patient-reported data[J]. Surgery, 2022. DOI: 10.1016/j.surg.2022.01.008.
35.Lo-Ciganic WH, Donohue JM, Hulsey EG, et al. Integrating human services and criminal justice data with claims data to predict risk of opioid overdose among Medicaid beneficiaries: a machine-learning approach[J]. PLoS One, 2021, 16(3): e0248360. DOI: 10.1371/journal.pone.0248360.
36.Dong X, Deng J, Rashidian S, et al. Identifying risk of opioid use disorder for patients taking opioid medications with deep learning[J]. J Am Med Inform Assoc, 2021, 28(8): 1683-1693. DOI: 10.1093/jamia/ocab043.
37.Thompson CL, Alcover K, Yip SW. Development and validation of a prediction model of prescription tranquilizer misuse based on a nationally representative United States sample[J]. Drug Alcohol De-pend, 2021, 218: 108344. DOI: 10.1016/j.drugalcdep.2020.108344.
38.Reps JM, Cepeda MS, Ryan PB. Wisdom of the CROUD: development and validation of a pa-tient-level prediction model for opioid use disorder using population-level claims data[J]. PLoS One, 2020, 15(2): e0228632. DOI: 10.1371/journal.pone.0228632.
39.Sun JW, Franklin JM, Rough K, et al. Predicting overdose among individuals prescribed opioids using routinely collected healthcare utilization data[J]. PLoS One, 2020, 15(10): e0241083. DOI: 10.1371/journal.pone.0241083.
40.Lo-Ciganic WH, Huang JL, Zhang HH, et al. Using machine learning to predict risk of incident opioid use disorder among fee-for-service Medicare beneficiaries: A prognostic study[J]. PLoS One, 2020, 15(7): e0235981. DOI: 10.1371/journal.pone.0235981.
41.Vitzthum LK, Riviere P, Sheridan P, et al. Predicting persistent opioid use, abuse, and toxicity among cancer survivors[J]. J Natl Cancer Inst, 2020, 112(7): 720-727. DOI: 10.1093/jnci/djz200.
42.Hastings JS, Howison M, Inman SE. Predicting high-risk opioid prescriptions before they are given[J]. Proc Natl Acad Sci U S A, 2020, 117(4): 1917-1923. DOI: 10.1073/pnas.1905355117.
43.Tseregounis IE, Henry SG. Assessing opioid overdose risk: a review of clinical prediction models utiliz-ing patient-level data[J]. Transl Res, 2021, 234: 74-87. DOI: 10.1016/j.trsl.2021.03.012.
44.Zhao S, Browning J, Cui Y, et al. Using machine learning to classify patients on opioid use[J]. J Pharm Health Serv Res, 2021, 12(4): 502-508. DOI: 10.1093/jphsr/rmab055.
45.Karhade AV, Ogink PT, Thio Q, et al. Machine learning for prediction of sustained opioid prescription after anterior cervical discectomy and fusion[J]. Spine J, 2019, 19(6): 976-983. DOI: 10.1016/j.spinee.2019.01.009.
46.Jing Y, Hu Z, Fan P, et al. Analysis of substance use and its outcomes by machine learning Ⅰ. Childhood evaluation of liability to substance use disorder[J]. Drug Alcohol Depend, 2020, 206: 107605. DOI: 10.1016/j.drugalcdep.2019.107605.
47.Pakvasa M, Abbasi A, Boachie-Mensah M, et al. Predictors of opioid prescription after orthognathic surgery in opioid naive adults from a large database[J]. J Craniofac Surg, 2021, 32(3): 978-982. DOI: 10.1097/scs. 0000000000007473.
48.马照红, 吴琼, 张衍军, 等. 苯二氮䓬类抗焦虑药物使用与滥用的调查研究[J]. 中国民康医学, 2008, 20(15): 2. [Ma ZH, Wu Q, Zhang YJ, et al. A survey study on application and abusive benzodiazepine[J]. Medical Journal of Chinese People's Health, 2008, 20(15): 2.] DOI: 10.3969/j.issn.1672-0369.2008.15.010.
49.任丽娜, 刘梅. 精神专科医院门诊患者中苯二氮䓬类药物应用情况调查[J]. 精神医学杂志, 2008, 21(5): 337-340. [Ren LN, Liu M. A cross sectional study of the utilization of benzodiazepine in a psychiatric outpatient department[J]. Journal of Psychiatry, 2008, 21(5): 337-340.] DOI: 10.3969/j.issn.1009-7201.2008.05.006.
50.Lanzillotta JA, Clark A, Starbuck E, et al. The impact of patient characteristics and postoperative opi-oid exposure on prolonged postoperative opioid use: an integrative review[J]. Pain Manag Nurs, 2018, 19(5): 535-548. DOI: 10.1016/j.pmn.2018.07.003.
51.Ward A, Jani T, De Souza E, et al. Prediction of prolonged opioid use after surgery in adolescents: in-sights from machine learning[J]. Anesth Analg, 2021, 133(2): 304-313. DOI: 10.1213/ane.0000000000005527.
52.Calcaterra SL, Scarbro S, Hull ML, et al. Prediction of future chronic opioid use among hospitalized patients[J]. J Gen Intern Med, 2018, 33(6): 898-905. DOI: 10.1007/s11606-018-4335-8.
53.Chou R, Turner JA, Devine EB, et al. The effectiveness and risks of long-term opioid therapy for chronic pain: a systematic review for a national institutes of health pathways to prevention workshop[J]. Ann Intern Med, 2015, 162(4): 276-286. DOI: 10.7326/m14-2559.
54.Grazal CF, Anderson AB, Booth GJ, et al. A machine-learning algorithm to predict the likelihood of prolonged opioid use following arthroscopic hip surgery[J]. Arthroscopy, 2022, 38(3): 839-847.e2. DOI: 10.1016/j.arthro.2021.08.009.
55.Sivaraman JJ, Proescholdbell SK, Ezzell D, et al. Characterizing opioid overdoses using emergency medical services data : a case definition algorithm enhanced by machine learning[J]. Public Health Rep, 2021, 136(1_suppl): 62s-71s. DOI: 10.1177/00333549211026802.
56.Segal Z, Radinsky K, Elad G, et al. Development of a machine learning algorithm for early detection of opioid use disorder[J]. Pharmacol Res Perspect, 2020, 8(6): e00669. DOI: 10.1002/prp2.669.
57.Ward R, Weeda E, Taber DJ, et al. Advanced models for improved prediction of opioid-related over-dose and suicide events among Veterans using administrative healthcare data[J]. Health Serv Out-comes Res Methodol, 2021: 1-21. DOI: 10.1007/s10742-021-00263-7.
58.Hur J, Tang S, Gunaseelan V, et al. Predicting postoperative opioid use with machine learning and in-surance claims in opioid-naïve patients[J]. Am J Surg, 2021, 222(3): 659-665. DOI: 10.1016/j.amjsurg.2021.03.058.
59.Alba AC, Agoritsas T, Walsh M, et al. Discrimination and calibration of clinical prediction models: users' guides to the medical literature[J]. JAMA, 2017, 318(14): 1377-1384. DOI: 10.1001/jama.2017.12126.
60.Collins GS, De Groot JA, Dutton S, et al. External validation of multivariable prediction models: a sys-tematic review of methodological conduct and reporting[J]. BMC Med Res Methodol, 2014, 14: 40. DOI: 10.1001/jama.2017.12126.
61.国家卫健委办公厅关于加强医疗机构麻醉药品和第一类精神药品管理的通知[EB/OL]. (2020-09-15)[2022-06-17]. http://www.nhc.gov.cn/cms-search/xxgk/getManuscriptXxgk.htm?id=ee4a21c2756f440e98f78d2533d7539a.
62.王雷振, 星一, 黄新洁, 等. 医院就诊患者麻醉药品,精神药品滥用或依赖特征分析[J]. 预防医学, 2019, 31(6): 5. [Wang LZ, Xing Y, Huang XJ, et al. Abuse or dependence of narcotic drugs and psychotropic drugs in hospital patients[J]. Preventive Medicine, 2019, 31(6): 5.] DOI: 10.19485/j.cnki.issn2096-5087.2019.06.001.
63.李红. 第二类精神药品的管理不容忽视[J]. 中国社区医师, 2018, 34(17): 10-11. [Li H. The management of the second types of psychotropic drugs should not be ignored[J]. Chinese Community Doctors, 2018, 34(17): 10-11.] DOI: 10.3969/j.issn.1007-614x.2018.17.004.
64.杜均. 代价敏感学习及其应用[D]. 武汉: 中国地质大学, 2009.