Monoclonal antibodies are a class of biological products with the fastest growth rate in the fields of biotechnology. They are widely used in cancer, autoimmune diseases and other fields due to their advantages of targeting and obvious therapeutic effect. Host cell proteins (HCP) are a class of process impurities that cannot be removed in its production and are easy to cause immunogenicity, and HCP content determination is an important critical quality attribute in the quality control of monoclonal antibody drugs. An enzyme-linked-immunosorbent assay ( ELISA) is the most common method for HCP quantitation, but it has many limitations. As a high-precision and high-accuracy detection method, mass spectrometry has been applied to the monitoring of HCP in the production process of monoclonal antibody biological drugs, which can complement ELISA, make up for the shortcomings of ELISA method, and provide a basis for optimization of production conditions and verification of purification effect. In this paper, we summarized the application and development of mass spectrometry method in the research of monoclonal antibody HCP in recent years from three aspects: sample preparation, sample separation and data acquisition, providing reference and guidance for subsequent research on the application of mass spectrometry to HCP detection.
1.王志明.基因工程药物中宿主细胞蛋白的检测与控制[J].中国新药杂志, 2016, 25(22): 2550-2557. [Wang ZM. De-tection and control of host cell proteins in genetic engineering pharmaceuticals[J]. Chinese Journal of New Drugs, 2016, 25(22): 2550-2557.] https://d.wanfangdata.com.cn/periodical/zgxyzz201622005.
2.崔新玲, 朱涛, 应万涛. 基因工程药物宿主细胞蛋白的研究进展[J].药物分析杂志, 2019, 39(9): 1533-1541. [Cui XL, Zhu T, Ying WT. Research progress on host cell proteins of genetically engineered pharmaceuticals[J]. Chinese Journal of Pharmaceutical Analysis, 2019, 39(9): 1533-1541.] DOI: 10.16155/j.0254-1793.2019.09.01.
3.Ahluwalia D, Dhillon H, Slaney T, et al. Identification of a host cell protein impurity in therapeutic pro-tein, P1[J]. J Pharm Biomed Anal, 2017, 141: 32-38. DOI: 10.1016/j.jpba.2017.03.065.
4.Gilgunn S, Bones J. Challenges to industrial mAb bioprocessing—removal of host cell proteins in CHO cell bioprocesses[J]. Curr Opin Chem Eng, 2018, 22: 98-106. DOI: 10.1016/j.coche.2018.08.001.
5.Jawa V, Joubert KM, Zhang QC, et al. Evaluating immunogenicity risk due to host cell protein impuri-ties in antibody-based biotherapeutics[J]. AAPS J, 2016, 18(6): 1439-1452. DOI: 10.1208/s12248-016-9948-4.
6.Dixit N, Miller NS, Salinas PA, et al. Residual host cell protein promotes polysorbate 20 degradation in a sulfatase drug product leading to free fatty acid particles[J]. Pharm Sci, 2016, 105: 1657-1666. DOI: 10.1016/j.xphs. 2016.02.029.
7.Gutiérrez AH, Moise L, Groot AD, et al. A new perspective on host cell proteins[J]. Hum Vaccin Im-munother, 2012, 8(9): 1172-1174. DOI: 10.4161/hv.22378.
8.Hall T, Sandefur SL, Frye CC, et al. Polysorbates 20 and 80 degradation by group XV lysosomal phos-pholipase A2 isomer X1 in monoclonal antibody formulations[J]. Pharm Sci, 2016, 105: 1633-1642. DOI: 10.1016/j.xphs.2016.02.022.
9.Valente KN, Levy NE, Min L, et al. Knockout of a difficult-to-remove CHO host cell protein, lipoprotein lipase, for improved polysorbate stability in monoclonal antibody formulations[J]. Biotechnol Bioeng, 2017, 114: 1006-1015.DOI: 10.1002/bit.26237.
10.Wei W, Arun AI, Broly H, et al. Degradation of an Fc-fusion recombinant protein by host cell proteases: identification of a CHO cathepsin D protease[J]. Biotechnol Bioeng, 2009, 104: 1132-1141. DOI: 10.1002/bit.22494.
11.Chon JH, Zarbis-Papastoitsis G. Advances in the production and downstream processing of antibod-ies[J]. New Biotechnol, 2011, 28: 458-463. DOI: 10.1016/j.nbt.2011.03.015.
12.Zhu-Shimoni J, Yu C, Nishihara J, et al. Host cell protein testing by ELISAs and the use of orthogonal methods[J]. Biotechnol Bioeng, 2014, 111(12): 2367-2379. DOI: 10.1002/bit.25327.
13.刘国芳, 刘晓志, 高健, 等. 宿主细胞残留蛋白质对单克隆抗体药物质量影响及其质量控制[J]. 中国生物工程杂志, 2019, 39(10): 105-111. [Liu GF, Liu XZ, Gao J, et al. Host cell residues protein against monoclonal anti-body drug quality Influence and quality control[J]. China Biotechnology, 2019, 39(10): 105-111.] DOI: 10.13523 /j.cb.20191013.
14.Zhang QC, Goetze AM, Cui HC, et al. Characterization of the coelution of host cell proteins with mon-oclonal antibodies during protein a purification[J]. Biotechnol Prog, 2016, 32(3): 707-718. DOI: 10.1002/btpr.2272.
15.Anne LT, Julita K, Bates R, et al. Host cell protein analysis in therapeutic protein bioprocessing - methods and applications[J]. Biotechnol J, 2013, 8: 655-670. DOI: 10.1002/biot.201200018.
16.Julita K, Grzeskowiak AT, Jungbauer A, et al. 2-D DIGE to expedite downstream process development for human monoclonal antibody purification[J]. Protein Expression Purif, 2009, 66: 58-65. DOI: 10.1016/j.pep.2009.01.007.
17.Liu N, Brevnov M, Furtado M, et al. Host cellular protein quantification: using an automated sol-id-phase proximity ligation assay[J]. Bio Process Int, 2012, 10: 44. DOI: 10.3389/fonc.2016.00055.
18.Bracewell DG, Francis R, Smales CM, et al. The future of host cell protein (HCP) identification during process development and manufacturing linked to a risk-based management for their control[J]. Bio-technol Bioeng, 2015, 112: 1727-1737. DOI: 10.1002/bit.25628.
19.Catherine EM, Daniel G, Mark S. Measurement and control of host cell proteins (HCPs) in CHO cell bioprocesses[J]. Curr Opin Biotechnol, 2014, 30: 153-160. DOI: 10.1016/j.copbio.2014.06.017.
20.Pezzini J, Joucla G, Gantier R,et al. Antibody capture by mixed-mode chromatography: a comprehen-sive study from determination of optimal purification conditions to identification of contaminating host cell proteins[J]. J Chromatogr A, 2011, 1218: 8197-8208. DOI: 10.1016/j.chroma.2011.09.036.
21.Matthew RS, Gregory CF, Andrew MG, et al. Identification and quantification of host cell protein im-purities in biotherapeutics using mass spectrometry[J]. Anal Biochem, 2012, 428: 50-157. DOI: 10.1016/j.ab.2012.05.018.
22.范雯婷, 朱为. 生物制品中的残留宿主细胞蛋白及其检测方法[J].国际生物制品学杂志, 2018, 41(4): 175-179. [Fan WT, Zhu W. Residual host cell protein and their detection methods in biological products[J]. Interna-tional Journal of Biologicals, 2018, 41(4): 175-179.] DOI: 10.3760/cma.j.issn.1673-4211.2018.04.005.
23.Chen IH, Xiao H, Daly T, et al. Improved host cell protein analysis in monoclonal antibody products through molecular weight cut off enrichment[J]. Anal Chem, 2020, 92: 3751-3757. DOI: 10.1021/acs.analchem.9b05081.
24.Mörtstedt H, Makower A, Edlund P, et al. Improved identification of host cell proteins in a protein biopharmaceutical by LC–MS/MS using the ProteoMinerTM Enrichment Kit[J]. J Pharm Biomed Anal, 2020, 185: 113256. DOI: 10.1016/j.jpba.2020.113256.
25.Chen I, Xiao H, Li N, et al. Improved host cell protein analysis in monoclonal antibody products through ProteoMiner[J]. Anal Biochem, 2020, 610: 113972 DOI: 10.1016/j.ab.2020.113972.
26.Wang Q, Slaney TR, Wu W, et al.Enhancing host-cell protein detection in protein therapeutics using HILIC enrichment and proteomic Analysis[J]. Anal Chem, 2020, 92: 10327-10335. DOI: 10.1021/acs.analchem.0c00360.
27.Huang LH, Wang N, Mitchell CE, et al. A novel sample preparation for shotgun proteomics characteri-zation of HCPs in antibodies[J]. Anal Chem, 2017, 89: 5436-5444. DOI: 10.1021/acs.analchem.7b00304.
28.Nie S, Greer T, Johnson RO, et al. Simple and sensitive method for deep profiling of host cell proteins in therapeutic antibodies by combining ultra-low trypsin concentration digestion,long chromato-graphic gradients,and BoxCar mass spectrometry acquisition[J]. Anal Chem, 2021, 93: 4382-4390. DOI: 10.1021/acs.analchem.0c03931.
29.Li D, Farchone A, Zhu Q, et al. Fast, robust, and sensitive identification of residual host cell proteins in recombinant monoclonal antibodies using sodium deoxycholate assisted digestion[J]. Anal Chem, 2020, 92: 11888-11894. DOI: 10.1021/acs.analchem.0c02258.
30.Walker DE, Yang F, Carver J, et al. A modular and adaptive mass spectrometry-based platform for support of bioprocess development toward optimal host cell protein clearance[J]. MABS, 2017, 9(4): 654-663. DOI: 10.1080/19420862.2017.1303023.
31.Doneanu CE, Xenopoulos A, Fadgen K, et al. Analysis of host-cell proteins in biotherapeutic proteins by comprehensive online two dimensional liquid chromatography/mass spectrometry[J]. MAbs, 2016, 4(1): 24-44. DOI: 10.4161/mabs.4.1.18748.
32.Yang F, Walker DE, Schoenfelder J, et al. A 2D LC-MS/MS strategy for reliable detection of 10-ppm level residual host cell proteins in therapeutic antibodies[J]. Anal Chem, 2018, 90: 13365-13372. DOI: 10.1021/acs.analchem.8b03044.
33.Ma J, Kilby GW. Sensitive, rapid, robust, and reproducible workflow for host cell protein profiling in biopharmaceutical process development[J]. Proteome Res, 2020, 19: 3396-3404. DOI: 10.1021/acs.jproteome.0c00252.
34.Kumar R, Shah RL, Ahmad S, et al. Harnessing the power of electrophoresis and chromatography: of-fline coupling of reverse phase liquid chromatography capillary zone electrophoresis-tandem mass spectrometry for analysis of host cell proteins in monoclonal antibody producing CHO cell line[J]. Electrophoresis, 2021, 42: 735-741. DOI: 10.1016/j.chroma.2020.460954.
35.王芳, 王松, 从海林, 等.基于毛细管电泳-质谱联用技术的代谢/蛋白质组学分析[J]. 色谱, 2020, 38(9): 1013-1021. [Wang F, Wang S, Cong LH, et al. Analysis of metabolomics and proteomics based on capillary elec-trophoresis-mass spectrometry[J]. Chinese Journal of Chromatography, 2020, 38(9): 1013-1021.] DOI: 10.3724/SP.J.1123.2020.02025.
36.Zhang ZB, Albanetti T, Linkous T, et al. Comprehensive analysis of host cell impurities in monoclonal antibodies with improved sensitivity by capillary zone electrophoresis mass spectrometry[J]. Electro-phoresis, 2017, 38: 401-407. DOI: 10.1002/elps.201600390.
37.Huang Y, Molden R, Hu MQ, et al. Toward unbiased identification and comparative quantification of host cell protein impurities by automated iterative LC-MS/MS (HCP-AIMS) for therapeutic protein de-velopment[J]. J Pharm Biomed Anal, 2021, 200: 114069. DOI: 10.1016/j.jpba.2021.114069.
38.Pythoud N, Bons J, Mijola G, et al. Optimized sample preparation and data processing of data inde-pendent acquisition methods for the robust quantification of trace-level host cell protein impurities in antibody drug products[J]. Proteome Res, 2021, 20: 923-931. DOI: 10.1021/acs.jproteome.0c00664.
39.Gillet LC, Navarro P, Tate S, el al. Targeted data extraction of the MS/MS spectra generated by da-ta-independent acquisition: a new concept for consistent and accurate proteome analysis[J]. Cellular Proteomics, 2012, 11(10): 1-17. DOI: 10.1074/mcp.O111.016717.
40.Farrell A, Mittermayr S, Morrissey B, et al. Quantitative host cell protein analysis using two dimension-al data independent LC-MSE[J]. Anal Chem, 2015, 87: 9186-9193. DOI: 10.1021/acs.analchem.5b01377.
41.Walker DE, Yang F, Carver J, et al. A modular and adaptive mass spectrometry-based platform for support of bioprocess development toward optimal host cell protein clearance[J]. MAbs, 2017, 9(4): 654-663. DOI: 10.1080/19420862.2017.1303023.
42.Gao XL, Rawal B, Wang Y, et al. Targeted host cell protein quantification by LC-MRM enables biolog-ics processing and product characterization[J]. Anal Chem, 2020, 92: 1007-1015. DOI: 10.1021/acs.analchem.9b03952.
43.Kreimer S, Gao YW, Ray S, et al. Host cell protein profiling by targeted and untargeted analysis of data independent acquisition mass spectrometry data with parallel reaction monitoring verification[J]. Anal Chem, 2017, 89: 5294-5302. DOI: 10.1021/acs.analchem.6b04892.
44.Meier F, Geyer FE, Winter SV, et al. BoxCar acquisition method enables single-shot proteomics at a depth of 10,000 proteins in 100 minutes[J]. Nat Methods, 2018, 15: 440-448. DOI: 10.1038/s41592-018-0003-5.