Welcome to visit Zhongnan Medical Journal Press Series journal website!

Home Articles Vol 33,2024 No.4 Detail

Research progress of drugs for the treatment of atopic dermatitis

Published on Apr. 29, 2024Total Views: 1921 times Total Downloads: 751 times Download Mobile

Author: ZOU Rui 1 LI Juan 2 LI Jinsong 1

Affiliation: 1. Biosafety Center, Hubei Institute for Drug Control, Wuhan 430075, China 2. College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430061, China

Keywords: Atopic dermatitis Type 2 inflammation Skin barrier Skin flora Biological agents Natural medicines

DOI: 10.12173/j.issn.1005-0698.202401064

Reference: ZOU Rui, LI Juan, LI Jinsong.Research progress of drugs for the treatment of atopic dermatitis[J].Yaowu Liuxingbingxue Zazhi,2024, 33(4):449-460.DOI:10.12173/j.issn.1005-0698.202401064.[Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

Atopic dermatitis (AD) is a chronic, relapsing, inflammatory dermatosis. It is an inflammatory chronic dermatosis, often associated with other atopic manifestations, that can affect both children and adults. Multiple studies have shown that people with AD have a higher burden of disease, with important implications for public health. At present, a large number of studies at home and abroad have shown that the pathogenesis of AD involves skin immune inflammation, skin barrier and skin flora, proposing that the impaired epidermal permeability barrier function is an important link in the pathogenesis of AD, therefore, repairing and protecting the skin barrier function, and maintaining the skin microecological balance are particularly important for the treatment of AD. The treatment of AD involves a number of aspects such as basic treatment, topical medication, physiotherapy and systemic medication. For mild to moderate patients, on the basis of basic treatment, topical medications and oral antihistamines can be used. For moderate to severe patients, systemic therapy is an option. Some innovative therapies represented by biologic have made important progress, which can effectively inhibit type 2 inflammation and help patients achieve long-term disease control. Meanwhile, the mining and development of natural medicines is also receiving increasing attention and will provide more options for the treatment of AD patients.

Full-text
Please download the PDF version to read the full text: download
References

1.Langan SM, Irvine AD, Weidinger S. Atopic dermatitis[J]. Lancet, 2020(396): 345-360. DOI: 10.1016/S0140-6736 (20)31286-1.

2.Laughter MR, Maymone MBC, Mashayekhi S, et al. The global burden of atopic dermatitis: lessons from the global burden of disease study 1990–2017[J]. Br J Dermatol, 2021, 184(2): 304-309. DOI: 10.1111/bjd.19580.

3.Ständer S. Atopic dermatitis[J]. N Engl J Med, 2021, 12(384): 1136-1143. DOI: 10.1056/NEJMra2023911.

4.中华医学会皮肤性病学分会免疫学组, 特应性皮炎协作研究中心. 中国特应性皮炎诊疗指南(2020版)[J]. 中华皮肤科杂志, 2020, 53(2): 81-88. DOI: 10.35541/cjd.20191000.

5.Bieber T. Atopic dermatitis: an expanding therapeutic pipeline for a complex disease[J]. Nat Rev Drug Discov, 2022, 21(1): 21-40. DOI: 10.1038/s41573-021-00266-6.

6.Wu SE, Chen YH, Chung CH, et al. Atopic dermatitis as a risk factor for herpes zoster infection independent of treatment: a nationwide population-based cohort study[J]. Dermatitis, 2023, 34(3): 241-249. DOI: 10.1089/derm.2022.0094.

7.Kumar R, Seibold MA, Burchard EG. Atopic dermatitis, race, and genetics[J]. J Allergy Clin Immunol, 2020, 145(1): 108-110. DOI: 10.1016/j.jaci.2019.11.008.

8.Beck LA, Cork MJ, Amaga M, et al. Type 2 inflammation contributes to skin barrier dysfunction in atopic dermatitis[J]. JID Innov, 2022, 2(5): 100131. DOI: 10.1016/j.xjidi.2022.100131.

9.王飞燕, 马善波, 陈雨菡, 等. 固有免疫在特应性皮炎发病机制中调控作用的研究进展[J]. 中国药师, 2022, 25(9): 1616-1624. [Wang FY, Ma SB, Chen YH, et al. Research progress in the regulatory role of innate immunity in the pathogenesis of atopic dermatitis[J]. China Pharmacist, 2022, 25(9): 1616-1624.] DOI: 1019962/j.cnki.issn1008-049X.2022.09.024.

10.Luger T, Amagai M, Dreno B, et al. Atopic dermatitis: role of the skin barrier, environment, microbiome, and therapeutic agents[J]. J Dermatol Sci, 2021, 102(3): 142-157. DOI: 10.1016/j.jdermsci.2021.04.007.

11.Haddad E, Cyr SL, Arima K, et al. Current and emerging strategies to inhibit type 2 inflammation in atopic dermatitis[J]. Dermatol Ther (Heidelb), 2022, 12(7): 1501-1533. DOI: 10.1007/s13555-022-00737-7.

12.Dubin C, Del Duca E, Guttman-Yassky E. The IL-4, IL-13 and IL-31 pathways in atopic dermatitis[J].Expert Rev Clin Immunol, 2021, 17(8): 835-852. DOI: 10.1080/1744666X.2021.1940962.

13.Hong H, Liao S, Chen F, et al. Role of IL-25, IL-33, and TSLP in triggering united airway diseases toward type 2 inflammation[J]. Allergy, 2020, 75(11): 2794-2804. DOI: 10.1111/all.14526.

14.Meng J, Moriyama M, Feld M, et al. New mechanism underlying IL-31–induced atopic dermatitis[J]. J Allergy Clin Immunol, 2018, 141(5): 1677-1689. DOI: 10.1016/j.jaci.2017.12.1002.

15.Ebrahim Soltani Z, Elahi M, Khavandi M, et al. Therapeutic potential of infliximab for pruritus in mice model of cholestasis induced by bile duct ligation: possible involvement of IL-31[J]. Int Immunopharmacol, 2023, 123: 110806. DOI: 10.1016/j.intimp.2023.110806.

16.Wei J, Chen D. IL-17 cytokines in immunity and inflammation[J]. Emerg Microbes Infect, 2013, 2: e60. DOI: 10.1038/emi.2013.58.

17.Nakajima S, Kitoh A, Egawa G, et al. IL-17A as an inducer for Th2 immune responses in murine atopic dermatitis models[J]. J Invest Dermatol, 2014, 134(8): 2122-2130. DOI: 10.1038/jid.2014.51.

18.Uchiyama A, Fujiwara C, Inoue Y, et al. Possible suppressive effects of baricitinib on serum IL-22 levels in atopic dermatitis[J]. J Dermatol Sci, 2022, 106(3): 189-192. DOI: 10.1016/j.jdermsci.2022.04.006.

19.Badi YE, Pavel AB, Pavlidis S, et al. Mapping atopic dermatitis and anti-IL-22 response signatures to type 2-low severe neutrophilic asthma[J]. J Allergy Clin Immunol, 2022, 149(1): 89-101. DOI: 10.1016/j.jaci.2021.04.010.

20.Torti DC, Feldman SR. Interleukin-12, interleukin-23, and psoriasis: current prospects[J]. J Am Acad Dermatol, 2007, 57(6): 1059-1068. DOI: 10.1016/j.jaad.2007.07.016.

21.Yang X, Kambe N, Takimoto-Ito R, et al. Advances in the pathophysiology of atopic dermatitis revealed by novel therapeutics and clinical trials[J]. Pharmacol Ther, 2021, 224: 107830. DOI: 10.1016/j.pharmthera.2021.107830.

22.Miot HA, Criado PR, de Castro CCS, et al. JAK-STAT pathway inhibitors in dermatology[J]. An Bras Dermatol, 2023, 98(5): 656-677. DOI: 10.1016/j.abd.2023.03.001.

23.Berdyshev E, Kim J, Kim BE, et al. Stratum corneum lipid and cytokine biomarkers at age 2 months predict the future onset of atopic dermatitis[J]. J Allergy Clin Immunol, 2023, 151(5): 1307-1316. DOI: 10.1016/j.jaci.2023.02.013.

24.Katsarou S, Makris M, Vakirlis E, et al. The role of tight junctions in atopic dermatitis: a systematic review[J]. J Clin Med, 2023, 12(4): 1538. DOI: 10.3390/jcm12041538.

25.Moosbrugger-Martinz V, Leprince C, Méchin M, et al. Revisiting the roles of filaggrin in atopic dermatitis[J].Int J Mol Sci, 2022, 23(10): 5318. DOI: 10.3390/ijms23105318.

26.Geoghegan JA, Irvine AD, Foster TJ. Staphylococcus aureus and atopic dermatitis: a complex and evolving relationship[J]. Trends Microbiol, 2018, 26(6): 484-497. DOI: 10.1016/j.tim.2017.11.008.

27.Al Kindi A, Williams H, Matsuda K, et al. Staphylococcus aureus second immunoglobulin-binding protein drives atopic dermatitis via IL-33[J]. J Allergy Clin Immunol, 2021, 147(4): 1354-1368. DOI: 10.1016/j.jaci.2020.09.023.

28.Nowicka D, Nawrot U. Contribution of Malassezia spp. to the development of atopic dermatitis[J]. Mycoses, 2019, 62(7): 588-596. DOI: 10.1111/myc.12913.

29.Wu AC. Omalizumab for atopic dermatitis overtreatment or lifesaver?[J]. JAMA Pediatr, 2019, 25: E1-E2. DOI: 10.1001/jamapediatrics.2019.4509.

30.Ryoma K, Sumika T, Mitsutoshi T, et al. Effects of dupilumab on itch-related events in atopic dermatitis: implications for assessing treatment efficacy in clinical practice[J]. Cells, 2023, 12: 239. DOI: 10.3390/cells12020239.

31.Gooderham MJ, Hong HC, Eshtiaghi P, et al. Dupilumab: a review of its use in the treatment of atopic dermatitis[J].J Am Acad Dermatol, 2018, 78(3): S28-S36. DOI: 10.1016/j.jaad.2017.12.022.

32.Agache I, Song Y, Posso M, et al. Efficacy and safety of dupilumab for moderate-to-severe atopic dermatitis: A systematic review for the EAACI biologicals guidelines[J]. Allergy, 2021, 76(1): 45-58. DOI: 10.1111/all.14510.

33.王钰, 李巍. 特应性皮炎外周血单个核细胞转录组特征及其在度普利尤单抗疗效预测中的应用[J]. 中华临床免疫和变态反应杂志, 2023, 17(5): 505-511. [Wang Y, Li W. Transcriptome characterization of peripheral blood single nucleated cells in atopic dermatitis and its application in the prediction of efficacy of dupliyuzumab[J]. Chinese Journal of Allergy & Clinical Immunology, 2023, 17(5): 505-511.] DOI: 10.3969/j.issn.1673-8705.2023. 05.021.

34.Beck LA, Bieber T, Weidinger S, et al. Tralokinumab treatment improves the skin microbiota by increasing the microbial diversity in adults with moderate-to-severe atopic dermatitis: Analysis of microbial diversity in ECZTRA 1, a randomized controlled trial[J]. J Am Acad Dermatol, 2023, 88(4): 816-823. DOI: 10.1016/j.jaad.2022.11.047.

35.Miron Y, Miller PE, Hughes C, et al. Mechanistic insights into the antipruritic effects of lebrikizumab, an anti-IL-13 mAb[J]. J Allergy Clin Immunol, 2022, 150(3): 690-700. DOI: 10.1016/j.jaci.2022.01.028.

36.Kabashima K, Furue M, Hanifin JM, et al. Nemolizumab in patients with moderate-to-severe atopic dermatitis: randomized, phase II, long-term extension study[J]. J Allergy Clin Immunol, 2018, 142(4): 1121-1130. DOI: 10.1016/j.jaci.2018.03.018.

37.Weiss D, Schaschinger M, Ristl R, et al. Ustekinumab treatment in severe atopic dermatitis: down-regulation of T-helper 2/22 expression[J]. J Am Acad Dermatol, 2017, 76(1): 91-97. DOI: 10.1016/j.jaad.2016.07.047.

38.Saakshi K, Patrick M, Sandra G, et al. Efficacy and safety of ustekinumab treatment in adults with moderate-to-severe atopic dermatitis[J]. Exp Dermatol, 2017, 26(1): 28-35. DOI: 10.1111/exd.13112.

39.Brunner PM, Pavel AB, Khattri S, et al. Baseline IL-22 expression in patients with atopic dermatitis stratifies tissue responses to fezakinumab[J]. J Allergy Clin Immunol, 2019, 143(1): 142-154. DOI: 10.1016/j.jaci.2018.07.028.

40.Schuler CF, Gudjonsson JE. IL-33 antagonism does not improve chronic atopic dermatitis: what can we learn?[J].J Allergy Clin Immunol, 2022, 150(6): 1410-1411. DOI: 10.1016/j.jaci.2022.10.009.

41.Simpson EL, Parnes JR, She D, et al. Tezepelumab, an anti-thymic stromal lymphopoietin monoclonal antibody, in the treatment of moderate to severe atopic dermatitis: a randomized phase 2a clinical trial[J]. J Am Acad Dermatol, 2019, 80(4): 1013-1021. DOI: 10.1016/j.jaad.2018.11.059.

42.Fahrbach K, Tarpey J, Washington EB, et al. Crisaborole ointment, 2%, for treatment of patients with mild-to-moderate atopic dermatitis: systematic literature review and network meta-analysis[J]. Dermatol Ther, 2020, 10(4): 681-694. DOI: 10.1007/s13555-020-00389-5.

43.Simpson EL, Imafuku S, Poulin Y, et al. A phase 2 randomized trial of apremilast in patients with atopic dermatitis[J]. J Invest Dermatol, 2019, 139(5): 1063-1072. DOI: 10.1016/j.jid.2018.10.043.

44.Gao Q, Zhao Y, Zhang J. Efficacy and safety of abrocitinib and upadacitinib versus dupilumab in adults with moderate-to-severe atopic dermatitis: a systematic review and meta-analysis[J]. Heliyon, 2023, 9(6): e16704. DOI: 10.1016/j.heliyon.2023.e16704.

45.Simpson EL, Forman S, Silverberg JI, et al. Baricitinib in patients with moderate-to-severe atopic dermatitis: results from a randomized monotherapy phase 3 trial in the United States and Canada (BREEZE-AD5)[J]. J Am Acad Dermatol, 2021, 85(1): 62-70. DOI: 10.1016/j.jaad.2021.02.028.

46.Chovatiya R, Paller AS. JAK inhibitors in the treatment of atopic dermatitis[J]. J Allergy Clin Immunol, 2021, 148(4): 927-940. DOI: 10.1016/j.jaci.2021.08.009.

47.Atmakuri S, Nene S, Jain H, et al. Topical delivery of tofacitinib citrate loaded novel nanoemulgel for the management of 2, 4-dinitrochlorobenzene induced atopic dermatitis in mice model[J]. J Drug Deliv Sci Tech, 2023, 80: 104145. DOI: 10.1016/j.jddst.2022.104145.

48.Li L, Wu N, Liu T, et al. The efficacy and immunological effects of upadacitinib in the treatment of moderate-to-severe Chinese atopic dermatitis patients[J]. Int Immunopharmacol, 2023, 125: 111193. DOI: 10.1016/j.intimp.2023.111193.

49.Wu S, Pang Y, He Y, et al. A comprehensive review of natural products against atopic dermatitis: flavonoids, alkaloids, terpenes, glycosides and other compounds[J]. Biomed Pharmacother, 2021, 140: 111741. DOI: 10.1016/j.biopha.2021.111741.

50.Wang L, Xian Y, Loo SKF, et al. Baicalin ameliorates 2, 4-dinitrochlorobenzene-induced atopic dermatitis-like skin lesions in mice through modulating skin barrier function, gut microbiota and JAK/STAT pathway[J]. Bioorg Chem, 2022, 119: 105538. DOI: 10.1016/j.bioorg.2021.105538.

51.Jo B, Park N, Jegal J, et al. A new flavonoid from stellera chamaejasme L., stechamone, alleviated 2, 4-dinitrochlorobenzene-induced atopic dermatitis-like skin lesions in a murine model[J]. Int Immunopharmacol, 2018, 59: 113-119. DOI: 10.1016/j.intimp.2018.04.008.

52.Choi JK, Jang YH, Lee S, et al. Chrysin attenuates atopic dermatitis by suppressing inflammation of keratinocytes[J]. Food Chem Toxicol, 2017, 110: 142-150. DOI: 10.1016/j.fct.2017.10.025.

53.Yeo H, Lee YH, Koh D, et al. Chrysin inhibits NF-κB-dependent CCL5 transcription by targeting IκB kinase in the atopic dermatitis-like inflammatory microenvironment[J]. Int J Mol Sci, 2020, 21(19): 7348. DOI: 10.3390/ijms21197348.

54.Yeo H, Lee YH, Ahn SS, et al. Chrysin inhibits TNFalpha-induced TSLP expression through downregulation of EGR1 expression in keratinocytes[J]. Int J Mol Sci, 2021, 22(9). DOI: 10.3390/ijms22094350.

55.Beken B, Serttas R, Yazicioglu M, et al. Quercetin improves inflammation, oxidative stress, and impaired wound healing in atopic dermatitis model of human keratinocytes[J]. Pediatr Allergy Immunol Pulmonol, 2020, 33(2): 69. DOI: 10.1089/ped.2019.1137.

56.Hou D, Zhang W, Gao Y, et al. Anti-inflammatory effects of quercetin in a mouse model of MC903-induced atopic dermatitis[J]. Int Immunopharmacol, 2019, 74: 105676. DOI: 10.1016/j.intimp.2019.105676.

57.Yang N, Shao H, Deng J, et al. Dictamnine ameliorates chronic itch in DNFB-induced atopic dermatitis mice via inhibiting MrgprA3[J]. Biochem Pharmacol, 2023, 208: 115368. DOI: 10.1016/j.bcp.2022.115368.

58.Chen X, Lin J, Liang Q, et al. Pseudoephedrine alleviates atopic dermatitis-like inflammatory responses in vivo and in vitro[J]. Life Sci, 2020, 258: 118139. DOI: 10.1016/j.lfs.2020.118139.

59.Chiu KM, Hung YL, Wang SJ, et al. Anti-allergic and anti-inflammatory effects of neferine on RBL-2H3 cells[J]. Int J Mol Sci, 2021, 22(20): 10994. DOI: 10.3390/ijms222010994.

60.Yang CC, Hung YL, Ko WC, et al. Effect of neferine on DNCB-induced atopic dermatitis in HaCaT cells and BALB/c mice[J]. Int J Mol Sci, 2021, 22(15): 8237. DOI: 10.3390/ijms22158237.

61.Vollono L, Falconi M, Gaziano R, et al. Potential of curcumin in skin disorders[J]. Nutrients, 2019, 11(9): 2169. DOI: 10.3390/nu11092169.

62.Wang Y, Zhang P, Zhang J, et al. Inhibitory effect of bisdemethoxycurcumin on DNCB-induced atopic dermatitis in mice[J]. Molecules, 2022, 28(1): 293. DOI: 10.3390/molecules28010293.

63.Caglayan SS, Karaman M, Cilaker MS, et al. Resveratrol ameliorates 2, 4-dinitrofluorobenzene-induced atopic dermatitis-like lesions through effects on the epithelium[J]. Peer J, 2016, 4: e1889. DOI: 10.7717/peerj.1889.

64.Marko M, Pawliczak R. Resveratrol and its derivatives in inflammatory skin disorders-atopic dermatitis and psoriasis: a review[J]. Antioxidants, 2023, 12(11): 1954. DOI: 10.3390/antiox12111954.

65.Wang Z, Zhang H, Qi C, et al. Ursolic acid ameliorates DNCB-induced atopic dermatitis-like symptoms in mice by regulating TLR4/NF-κB and Nrf2/HO-1 signaling pathways[J]. Int Immunopharmacol, 2023, 118: 110079. DOI: 10.1016/j.intimp.2023.110079.

66.Cheng Y, Zhang X, Lin S, et al. Echinocystic acid ameliorates arthritis in SKG mice by suppressing Th17 cell differentiation and human rheumatoid arthritis fibroblast-like synoviocytes inflammation[J]. J Agric Food Chem, 2022, 70(51): 16176-16187. DOI: 10.1021/acs.jafc.2c05802.

67.Kang Y, Kim H, Lee M, et al. Effects of echinocystic acid on atopic dermatitis and allergic inflammation of the skin and lungs[J]. Phytomedicine, 2022, 104: 154211. DOI: 10.1016/j.phymed.2022.154211.

68.Moon G, Lee Y, Kim E, et al. Immunomodulatory and anti-inflammatory effects of asiatic acid in a DNCB-induced atopic dermatitis animal model[J]. Nutrients, 2021, 13(7): 2448. DOI: 10.3390/nu13072448.

69.Kang Y, Kim H, Lee M, et al. Oleanolic acid alleviates atopic dermatitis-like responses in vivo and in vitro[J]. Int J Mol Sci, 2021, 22(21): 12000. DOI: 10.3390/ijms 222112000.

70.Wu PC, Chuo WH, Lin SC, et al. Sclareol attenuates the development of atopic dermatitis induced by 2, 4-dinitrochlorobenzene in mice[J]. Immunopharmacol Immunotoxicol, 2019, 41(1): 109-116. DOI: 10.1080/ 08923973.2018.1555846.

71.Zhang L, Xie Q, Li X. Esculetin: a review of its pharmacology and pharmacokinetics[J]. Phytother Res, 2022, 36(1): 279-298. DOI: 10.1002/ptr.7311.

72.Jeong N, Yang E, Jin M, et al. Esculetin from Fraxinus rhynchophylla attenuates atopic skin inflammation by inhibiting the expression of inflammatory cytokines[J]. Int Immunopharmacol, 2018, 59: 209-216. DOI: 10.1016/j. intimp.2018.04.005.

73.Lim J, Lee J, Lee D, et al. Umbelliferone reduces the expression of inflammatory chemokines in HaCaT cells and DNCB/DFE-induced atopic dermatitis symptoms in mice[J]. Int Immunopharmacol, 2019, 75: 105830. DOI: 10.1016/j.intimp.2019.105830.

74.Younas, Khan A, Shehzad O, et al. Anti-allergic activities of Umbelliferone against histamine-and Picryl chloride-induced ear edema by targeting Nrf2/iNOS signaling in mice[J]. BMC Complement Med Ther, 2021, 21(1): 215. DOI: 10.1186/s12906-021-03384-1.

Popular papers
Last 6 months