目的 系统评价血管内皮生长因子受体酪氨酸激酶抑制剂(VEGFR-TKI)肝毒性的风险。
方法 计算机检索PubMed、Embase、CENTRAL、CNKI、WanFang Data和SinoMed数据库,搜集VEGFR-TKI相关肝毒性的随机对照试验(RCT),检索时限均从建库至2024年2月28日。由2名研究者独立筛选文献、提取资料并评价纳入研究的偏倚风险。采用Stata 15.0软件进行网状Meta分析。
结果 共纳入32个RCT,涉及9 种VEGFR-TKI,包括12 949例患者。网状Meta分析结果显示,与安慰剂相比,除安罗替尼致丙氨酸转氨酶(ALT)升高的风险未显著增加,安罗替尼、凡德他尼致天冬氨酸转氨酶(AST)升高的风险未显著增加,安罗替尼、凡德他尼、索拉非尼、仑伐替尼致总胆红素(TBIL)升高的风险未显著增加外,其余VEGFR-TKI致ALT、AST、TBIL升高的风险均有显著增加;与安慰剂相比,培唑帕尼、阿帕替尼致严重级别ALT升高的风险显著增加,培唑帕尼、阿帕替尼、舒尼替尼、索拉非尼、卡博替尼致严重级别AST升高的风险显著增加,瑞戈非尼致严重级别TBIL升高的风险显著增加。
结论 VEGFR-TKI可增加患者肝毒性的发生风险,不同VEGFR-TKI引发各指标升高的风险不同。
血管内皮生长因子受体酪氨酸激酶抑制剂(vascular endothelial growth factor receptor tyrosine kinase inhibitor,VEGFR-TKI)是一类与酪氨酸激酶竞争性结合,阻断分子内酪氨酸激酶的磷酸化,从而抑制肿瘤新生血管生成的小分子药物。临床研究[1-3]显示,VEGFR-TKI在肾癌、肝癌和肺癌等多种实体瘤治疗方面疗效显著,成为近几年抗肿瘤药物的研究热点之一。随着VEGFR-TKI的广泛使用,相关不良反应的报道也逐渐增多。Lee等[4]的研究显示,在接受VEGFR-TKI治疗的患者中,不良事件的发生率超过50%,严重不良事件发生率超过30%。VEGFR-TKI所致的肝毒性可导致患者用药剂量调整或暂停使用[5]。已有1例接受培唑帕尼治疗晚期肾癌患者出现重度肝损伤的文献病例报道[6],也有关于瑞戈非尼[7]、舒尼替尼[8]、索拉非尼[9]导致致命性肝衰竭的案例报道。培唑帕尼、瑞格非尼、舒尼替尼、索拉非尼4种VEGFR-TKI具有严重及致死性肝毒性的潜在风险,被美国食品药品管理局要求在说明书中添加黑框警告[10]。因此,肝毒性是VEGFR-TKI临床应用中面临的问题之一,需要临床医生引起重视。相关VEGFR-TKI肝毒性的临床试验较少,不同VEGFR-TKI之间肝毒性比较的临床试验甚少,导致评价VEGFR-TKI肝毒性风险可能存在局限性。目前VEGFR-TKI肝毒性风险网状Meta分析的研究较少,且缺乏对国产药物阿帕替尼和安罗替尼肝毒性风险的分析。因此,本研究采用网状Meta分析的方法,纳入最新数据,对不同VEGFR-TKI的肝毒性风险进行综合评价和排序,为临床安全用药提供参考。
1 资料与方法
1.1 纳入与排除标准
1.1.1 研究类型
随机对照试验(randomized controlled trial,RCT)。
1.1.2 研究对象
确诊实体肿瘤或血液恶性肿瘤,年龄>18岁。
1.1.3 干预措施
试验组和对照组使用不同的VEGFR-TKI类药物,或对照组给予安慰剂。
1.1.4 结局指标
结局指标至少包括以下1个指标:①丙氨酸转氨酶(alanine aminotransferase,ALT)升高发生率,ALT升高定义为>1倍正常值上限(ULN)[11];②天冬氨酸转氨酶(aspartate aminotransferase,AST)升高发生率,AST升高定义为>1倍ULN[11];③血清总胆红素(total bilirubin,TBIL)升高发生率,TBIL升高定义为>1倍ULN[11];④ 严重级别ALT升高发生率,严重级别ALT升高定义为>5倍ULN[11];⑤严重级别AST水平升高发生率,严重级别AST升高定义为>5倍ULN[11];⑥严重级别TBIL升高发生率,严重级别TBIL升高定义为>3倍ULN[11]。
1.1.5 排除标准
研究涉及以下任一项即可排除:①在任何组中包含化疗治疗的研究;②无可用的结局指标数据;③重复发表的文献;④无法获得全文的研究。
1.2 文献检索策略
计算机检索 PubMed、CENTRAL、Embase、CNKI、WanFang Data和SinoMed数据库,搜集VEGFR-TKI相关肝毒性的RCT,检索时限均从建库至2024年2月28日。同时检索纳入研究的参考文献。采用主题词结合自由词的检索策略。中文检索词包括:阿帕替尼、安罗替尼、卡博替尼、仑伐替尼、培唑帕尼、瑞戈非尼、索拉非尼、舒尼替尼、凡德他尼、随机对照。英文检索词包括:apatinib、anlotinib、cabozantinib、lenvatinib、pazopanib、regorafenib、sorafenib、sunitinib、vandetanib、vascular endothelial growth factor receptor tyrosine kinase inhibitor、randomized controlled trial。以PubMed数据库为例,具体检索策见框1。
1.3 文献筛选与资料提取
由2名研究员独立筛选文献、提取资料并交叉核对,如遇到分歧,由第3名研究员协助解决。将文献检索结果合并后导入Endnote软件,剔除重复文献,阅读文题和摘要排除明显不相关的文献后,进一步阅读全文,以确定最终是否纳入。资料提取内容主要包括:①纳入研究的基本信息,如第一作者名字、发表年份、试验分期;②研究对象的基线特征,如样本量、年龄、肿瘤类型;③干预措施,如试验组及对照组用药信息;④偏倚风险评价的关键要素;⑤所关注的结局指标和结果测量数据。
1.4 纳入研究的偏倚风险评价
由 2 名研究者独立评价纳入研究的偏倚风险,使用Cochrane手册5.1.0推荐的RCT偏倚风险评估工具[12]进行偏倚风险评价。评价的内容包括:随机序列生成、分配隐藏、对患者及试验人员实施盲法、对结局评估者实施盲法、结果数据不完整、选择性报告及其他偏倚。
1.5 统计学分析
采用Stata 15.0软件制作网状图,基于频率学理论进行网状Meta分析[13]。二分类变量采用相对危险度(relative risk,RR)作为效应分析统计量,并提供其95%置信区间(confidence interval,CI)。采用节点分析法,检测网络整体的不一致性,P>0.05表示网络整体是一致的。当无闭合环时,不需要进行一致性检测。根据联赛表对各种干预措施之间比较进行分析。采用累积排序概率曲线下面积(surface under the cumulative ranking curve,SUCRA)对多种干预措施的效果进行排序 [14],SUCRA 越小表示发生风险越高。比较-校正漏斗图显示各项研究效应值的分布情况,判断各项研究是否存在异质性,识别发表偏倚或小样本研究效应。
2 结果
2.1 文献筛选流程及结果
初检共获得相关文献9 837篇,经逐层筛选后,最终纳入32篇文献。文献检索流程及结果见图1。
2.2 纳入研究的基本特征及偏倚风险评价结果
29项研究为VEGFR-TKI药物 vs. 安慰剂,其中试验组患者使用阿帕替尼3项,安罗替尼3 项,卡博替尼2项,舒尼替尼 1 项,瑞戈非尼6项,培唑帕尼6项,凡德他尼2项,索拉非尼6项。其余3项研究为培唑帕尼 vs. 舒尼替尼,仑伐替尼 vs. 索拉非尼,索拉非尼 vs. 舒尼替尼,纳入研究的基本特征见表1。纳入的32项研究中,15项研究[15, 21-22, 24-25, 30-36, 39, 41, 45]仅提及“随机”未描述具体的随机方法;对于参与者设盲,14项研究[15, 19, 24-26, 29-33, 35-36, 39, 45]未提及,4项研究[21-22, 34, 37]未采取;对于结果评估者设盲,11项研究[15, 19, 24-26, 29, 32-33, 35-36, 39]未提及,7项研究[21-22, 30-31, 34, 37, 45]未采取;对于完整性报告和选择性偏倚,2项研究[16, 28]不清楚,2项研究[19, 35]存在高风险。纳入研究的偏倚风险评价结果见图2。
2.3 网状Meta分析结果
2.3.1 结局指标网络证据图及全局不一致性检验
纳入研究的网络证据见图3。图中圆点表示一种干预措施,两个圆点之间的直线表示两个治疗措施的直接比较;直线的粗细表示两者直接研究的数目。
ALT升高发生率及严重级别ALT升高发生率的网状证据图不存在闭环结构,无需进行全局不一致性检验。AST升高发生率(P=0.461)、TBIL升高发生率(P=0.663)、严重级别AST升高发生率(P=0.751)、严重级别TBIL升高发生率(P=0.600)的全局不一致性检验的P值均大于0.05,表明呈较好的一致性。
2.3.2 ALT升高发生率
共纳入25项研究[15-20, 22, 25, 27-28, 30-36, 38-39, 41-46]。网状Meta分析结果显示,与安慰剂相比,仅安罗替尼致ALT升高的风险未显著增加[RR=2.33,95%CI(0.92,5.86)],其余VEGFR-TKI致ALT升高的风险显著增加,见图4。培唑帕尼致ALT升高的风险显著高于索拉非尼[RR=1.95,95%CI(1.06,3.60)]。SUCRA概率排序结果显示,ALT升高风险最高的是卡博替尼,最低的是索拉非尼,见表2。
2.3.3 AST升高发生率
共纳入26项研究[15-20, 22, 25, 27-38, 40-41, 43-46]。网状Meta分析结果显示,与安慰剂相比,凡德他尼[ RR=0.73,95%CI(0.33,1.63)]及安罗替尼[RR=2.03,95%CI(0.88,4.66)]致AST升高的风险未显著增加,其余VEGFR-TKI致ALT升高的风险显著增加。索拉非尼[RR=3.77,95%CI(1.52,9.36)]、舒尼替尼[RR=3.93,95%CI(1.51,10.24)]、培唑帕尼[RR=4.56,95%CI(1.91,10.89)]、瑞戈非尼[RR=2.95,95%CI(1.13,7.67)]、卡博替尼[RR=5.92,95CI(1.64,21.32)]、阿帕替尼[RR= 3.64,95%CI(1.39,9.56)]致ALT升高的风险显著高于凡德他尼,见图5。SUCRA概率排序结果显示,AST升高风险最高的是卡博替尼,最低的是凡德他尼,见表2。
2.3.4 TBIL升高发生率
共纳入19项研究[16-20, 23-28, 32, 34-37, 39, 41-42]。网状Meta分析结果显示,与安慰剂相比,培唑帕尼[RR=3.21,95%CI(2.27,4.54)]、瑞戈非尼[RR=4.94,95%CI(3.12,7.81)]、舒尼替尼[RR=2.33,95%CI(1.61,3.37)]、阿帕替尼[RR=2.41,95%CI(1.57,3.71)]致TBIL升高的风险显著增加,其余VEGFR-TKI致TBIL升高的风险未显著增加。阿帕替尼[RR=2.58,95%CI(1.15,5.79)]、舒尼替尼[RR=2.49,95%CI(1.14,5.41)]、瑞戈非尼[RR=5.28,95%CI(2.32,12.02)]、培唑帕尼[RR=3.43,95%CI(1.59,7.38)]致TBIL升高的风险显著高于索拉非尼。瑞戈非尼[RR=4.69,95%CI(1.94,11.33)]、培唑帕尼[RR=3.05,95%CI(1.33,6.98)]致TBIL升高的风险显著高于仑伐替尼。舒尼替尼致TBIL升高的风险显著低于培唑帕尼[RR=0.73,95%CI(0.61,0.86)]。阿帕替尼[RR=0.49,95%CI(0.26,0.92)]、舒尼替尼[RR=0.47,95%CI(0.26,0.85)]致TBIL升高的风险显著低于瑞戈非尼,见图6。SUCRA概率排序结果显示,TBIL升高风险最高的是瑞戈非尼,最低的是索拉非尼,见表2。
2.3.5 严重级别ALT升高发生率
共纳入23项研究[15-20, 22, 25, 27-28, 30-34, 36, 38-39, 41-46]。网状Meta分析结果显示,与安慰剂相比,培唑帕尼[RR=8.58,95%CI(3.73,19.74)]、阿帕替尼[RR=4.49,95%CI(1.08,18.69)]致严重级别ALT升高的风险显著增加。培唑帕尼致严重级别ALT升高的风险显著高于索拉非尼[RR=4.77,95%CI(1.42,16.08)]、舒尼替尼[RR=4.52,95%CI(1.35,15.13)]。安罗替尼致严重级别ALT升高的风险显著低于培唑帕尼[RR=0.05,95%CI(0.00,0.64)],见图7。SUCRA概率排序结果显示,严重级别ALT升高风险最高的是培唑帕尼,最低的是安罗替尼,见表2。
2.3.6 严重级别AST升高发生率
共纳入26项研究[15-22, 25, 27-34, 36-38, 40-41, 43-46]。网状Meta分析结果显示,与安慰剂相比,舒尼替尼[RR=2.88,95%CI(1.20,4.34)],索拉非尼[RR=2.40,95%CI(1.31,4.39)],培唑帕尼[RR=10.01,95%CI(5.15,19.49)],卡博替尼[RR=1.90,95%CI(1.11,3.26)],阿帕替尼[RR=2.75,95%CI(1.33,5.69)]致严重级别AST升高的风险显著增;培唑帕尼致严重级别AST的风险显著高于仑伐替尼[RR=6.62,95%CI(3.09,14.16)]、索拉非尼[RR=4.17,95%CI(2.34,7.43)]、舒尼替尼[RR=4.39,95%CI(2.67,7.22)]。瑞戈非尼[RR=0.13,95%CI(0.05,0.34)]、卡博替尼[RR=0.19,95%CI(0.08,0.45)]、安罗替尼[RR=0.07,95%CI(0.01,0.64)]、阿帕替尼[RR= 0.27,95%CI(0.10,0.74)]致严重级别AST升高的风险显著低于培唑帕尼,见图8。SUCRA概率排序结果显示,严重级别AST升高风险最高的培唑帕尼,最低的是凡德他尼,见表2。
2.3.7 严重级别TBIL升高发生率
共纳入15项研究[16-20, 23-28, 32, 34, 36-37, 39, 41-42]。网状Meta分析结果显示,与安慰剂相比,仅瑞戈非尼[RR=3.02,95%CI(1.35,6.74)]致严重级别TBIL升高的风险显著增加,见图9。SUCRA概率排序结果显示,严重级别TBIL升高风险最高的是凡德他尼,最低的是索拉非尼,见表2。
2.4 比较-校正漏斗图
比较-校正漏斗图中,关于ALT和AST升高发生率的研究中,均有一个研究点位于漏斗外部;其余研究在漏斗图中的分布大致对称,提示研究没有其他偏倚或者发表偏倚,见图10。
3 讨论
本研究较全面地对VEGFR-TKI的肝毒性风险进行系统评价及网状Meta分析,纳入32个RCT,涉及9种VEGFR-TKI。在临床试验中,23%~50%的患者发生以ALT和/或AST异常为特征的肝损伤[47]。药物肝毒性的早期实验室生化指标特征为ALT、AST、TBIL升高[48]。本研究结果显示,与安慰剂相比,除安罗替尼致ALT升高的风险未显著增加,安罗替尼、凡德他尼致AST升高的风险未显著增加,安罗替尼、凡德他尼、索拉非尼、仑伐替尼致TBIL升高的风险未显著增加外,其余VEGFR-TKI致ALT、AST、TBIL升高的风险均显著增加。在严重不良反应级别中,与安慰剂相比,培唑帕尼、阿帕替尼致严重级别ALT升高的风险显著增加,培唑帕尼、阿帕替尼、舒尼替尼、索拉非尼、卡博替尼致严重级别AST升高的风险显著增加,瑞戈非尼致严重级别TBIL升高的风险显著增加。由此,推测VEGFR-TKI会增加肝毒性的发生风险,与Ghatalia等[49]基于VEGFR-TKI组与非VEGFR-TKI组作比较的研究结果相似。等级概率排序提示,卡博替尼致ALT、AST升高的风险最高,培唑帕尼致严重级别ALT、AST升高的风险最高,与Shah等[47]的研究相符,卡博替尼致ALT/AST升高的发生率最高为86%,培唑帕尼致严重级别ALT/AST升高的发生率最高为7%~12%。由此推测,不同VEGFR-TKI类药物的肝毒性风险不同。
VEGFR-TKI肝毒性的确切机制尚不清楚。有研究[50]表明,信号转导通路的调节与肝毒性的发生有关,如阿帕替尼调节Wnt信号通路和氧化应激信号通路来诱导肝毒性的发生。培唑帕尼和舒尼替尼经过P450 CYP3A4酶系代谢,形成具有醛样结构的反应代谢物,被认为是导致严重肝毒性的物质来源[51-52]。培唑帕尼在治疗期间ALT升高与代谢酶的基因多态性有关[53]。此外,肝毒性的机制,还与免疫介导、线粒体功能有关[54]。
本研究存在一定的局限性:①评估肝毒性的相关指标除AST、ALT、TBIL外,还有碱性磷酸酶、白蛋白、γ-谷氨酰转移酶、凝血指标等,仅有少数试验报道后者,故未能进行合并分析;②不同VEGFR-TKI类药物间直接比较的试验较少,几项试验样本量较小,可能存在小样本研究效应,导致研究可能存在发表偏倚;③基于临床研究的汇总数据,未能获取每例患者在使用药物前肝功能的基线水平,可能影响肝毒性发生率与严重程度结果的可靠性;④部分研究地域局限于我国进行,种族以亚洲人群为主,未能考虑潜在的地域、种族差异引起的影响。
综上所述,VEGFR-TKI肝毒性的发生风险较高。患者在接受VEGFR-TKI治疗时,需要关注相关肝功能的指标,早期识别肝毒性的发生。
1.Rathmell WK, Rumble RB, Veldhuizen PJ, et al. Management of metastatic clear cell renal cell carcinoma: ASCO guideline[J]. J Clin Oncol, 2022, 40(25): 2957-2995. DOI: 10.1200/JCO.22.00868.
2.Qin SK, Chan SL, Gu SZ, et al. Camrelizumab plus rivoceranib versus sorafenib as first-line therapy for unresectable hepatocellular carcinoma (CARES-310): a randomised, open-label, international phase 3 study[J]. Lancet, 2023, 402(10408): 1133-1146. DOI: 10.1016/S0140-6736(23)00961-3.
3.Marco S, Tomasini P, Greillier L, et al. Anti-angiogenic factors in thoracic oncology: successes, failures and prospects[J]. Rev Mal Respir, 2011, 28(10): 1216-1229. DOI: 10.1016/j.rmr.2011.04.014.
4.Lee N, Lee JL, Lee J. Analysis of anti-angiogenesis-related adverse events associated with vascular endothelial growth factor receptor-tyrosine kinase inhibitors (VEGFR-TKIs) in patients with metastatic renal cell carcinoma[J]. Target Oncol, 2023, 18(2): 247-255. DOI: 10.1007/s11523-023-00951-z.
5.Eder JP, Shapiro GI, Appleman L, et al. A phase I study of foretinib, a multi-targeted inhibitor of c-Met and vascular endothelial growth factor receptor 2[J]. Clin Cancer Res, 2010, 16(13): 3507-3516. DOI: 10.1158/1078-0432.CCR-10-0574.
6.王直滔, 何玲芳, 楼永海, 1例培唑帕尼片致重度肝损伤的病例分析与药学监护[J]. 药物流行病学杂志, 2023, 32(1): 116-120. [Wang ZT, He LF, Lou YH. Pharmaceutical care and individualized selection of liver protective drugs in a case of severe liver injury caused by pezopanib tablets[J]. Chinese Journal of Pharmacoepidemiology, 2023, 32(1): 116-120.] DOI: 10.19960/j.issn.1005-0698.202301018.
7.Mir O, Brodowicz T, Italiano A, et al. Safety and efficacy of regorafenib in patients with advanced soft tissue sarcoma (REGOSARC): a randomised, double-blind, placebo-controlled, phase 2 trial[J]. Lancet Oncol, 2016, 17(12): 1732-1742. DOI: 10.1016/S1470-2045(16)30507-1.
8.Zhao B, Zhao H, Zhao J. Risk of fatal adverse events in cancer patients treated with sunitinib[J]. Crit Rev Oncol Hematol, 2019, 137: 115-122. DOI: 10.1016/j.critrevonc.2019.03.007.
9.Fairfax P, Pratap S, Roberts ISD, et al. Fatal case of sorafenib-associated idiosyncratic hepatotoxicity in the adjuvant treatment of a patient with renal cell carcinoma[J]. BMC Cancer, 2012, 12: 590. DOI: 10.1186/1471-2407-12-590.
10.Karczmarek-Borowska B, Sałek-Zań A. Hepatotoxicity of molecular targeted therapy[J]. Contemp Oncol (Pozn), 2015, 19(2): 87-92. DOI: 10.5114/wo.2014.43495.
11.US Department of Health and Human Services, National Institutes of Health, National Cancer Institute. Common terminology criteria for adverse events (CTCAE) Version 4.0[EB/OL]. (2010-06-14) [2022-08-01].https://evs.nci.nih.gov/ftp1/CTCAE/CTCAE_4.03/CTCAE_4.03_2010-06-14_QuickReference_5x7.pdf.
12.Cumpston M, Li T, Page MJ, et al. Updated guidance for trusted systematic reviews: a new edition of the Cochrane Handbook for Systematic Reviews of Interventions[J]. Cochrane Database Syst Rev, 2019, 10(10): ED000142. DOI: 10.1002/14651858.ED000142.
13.Shim S, Yoon BH, Shin IS, et al. Network Meta-analysis: application and practice using Stata[J]. Epidemiol Health, 2017, 39: e2017047. DOI: 10.4178/epih.e2017047.
14.Cote MP, Lubowitz JH, Brand JC, et al. Understanding network Meta-analysis (NMA) conclusions requires scrutiny of methods and results: introduction to NMA and the geometry of evidence[J]. Arthroscopy, 2021, 37(7): 2013-2016. DOI: 10.1016/j.arthro.2021.04.070.
15.Kang YK, Ryu MH, Bartolomeo MD, et al. Rivoceranib, a VEGFR-2 inhibitor, monotherapy in previously treated patients with advanced or metastatic gastric or gastroesophageal junction cancer (ANGEL study): an international, randomized, placebo-controlled, phase 3 trial[J]. Gastric Cancer, 2024, 27(2): 375-386. DOI: 10.1007/s10120-023-01455-5.
16.Lin Y, Qin SK, Li ZY, et al. Apatinib vs placebo in patients with locally advanced or metastatic, radioactive iodine–refractory differentiated thyroid cancer the REALITY randomized clinical trial[J]. JAMA Oncol, 2022, 8(2): 242-250. DOI: 10.1001/jamaoncol.2021.6268.
17.Qin SK, Li Q, Gu SZ, et al. Apatinib as second-line or later therapy in patients with advanced hepatocellular carcinoma (AHELP): a multicentre, double-blind, randomised, placebo-controlled, phase 3 trial[J]. Lancet Gastroenterol Hepatol, 2021, 6(7): S59-S68. DOI: 10.1016/S2468-1253(21)00109-6.
18.Cheng Y, Wang QM, Li K, et al. Third-line or above anlotinib in relapsed and refractory small cell lung cancer patients with brain metastases: a post hoc analysis of ALTER1202, a randomized, double-blind phase 2 study[J]. Cancer Innov, 2023. 2(3): 181-190. DOI: 10.1002/cai2.43.
19.Chi YHB, Zheng XQ, Zhang Y, et al. Anlotinib in locally advanced or metastatic radioiodine-refractory differentiated thyroid carcinoma: a randomized, double-blind, multicenter phase Ⅱ trial[J]. Clin Cancer Res, 2023, 29(20): 4047-4056. DOI: 10.1158/1078-0432.CCR-22-3406.
20.Zhao JZ, Chi YHB, Hu CX, et al. Anlotinib in patients with medullary thyroid carcinoma with negative prognostic factors: a sub-analysis based on the ALTER01031 study[J]. Front Oncol, 2022, 12: 852032. DOI: 10.3389/fonc.2022.852032.
21.Kelley RK, Miksad R, Cicin I, et al. Efficacy and safety of cabozantinib for patients with advanced hepatocellular carcinoma based on albumin-bilirubin grade[J]. British J Cancer, 2022, 126(4): 569-575. DOI: 10.1038/s41416-021-01532-5.
22.Schlumberger M, Elisei R, Müller S, et al. Overall survival analysis of EXAM, a phase III trial of cabozantinib in patients with radiographically progressive medullary thyroid carcinoma[J]. Ann Oncology, 2017, 28(11): 2813-2819. DOI: 10.1093/annonc/mdx479.
23.Goodman VL, Rock EP, Dagher R, et al. Approval summary: sunitinib for the treatment of imatinib refractory or intolerant gastrointestinal stromal tumors and advanced renal cell carcinoma[J].Clin Cancer Res, 2007, 13(5): 1367-1373. DOI: 10.1158/1078-0432.CCR-06-2328.
24.Cesne AL, Chevreau C, Perrin C, et al. Regorafenib in patients with relapsed advanced or metastatic chordoma: results of a non-comparative, randomised, double-blind, placebo-controlled, multicentre phase II study[J]. ESMO Open, 2023, 8(3): 1-8. DOI: 10.1016/j.esmoop.2023.101569.
25.Xu JM, Xu RH, Qin SK, et al. Regorafenib in Chinese patients with metastatic colorectal cancer: subgroup analysis of the phase 3 CONCUR trial[J]. J Gastroenterol Hepatol, 2020, 35(8): 1307-1316. DOI: 10.1111/jgh.14974.
26.Penel N, Mir O, Wallet J, et al. A double-blind placebo-controlled randomized phase II trial assessing the activity and safety of regorafenib in non-adipocytic sarcoma patients previously treated with both chemotherapy and pazopanib[J]. Eur J Cancer, 2020, 126: 45-55. DOI: 10.1016/j.ejca.2019.12.001.
27.Bruix J, Qin S K, Merle P, et al. Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): a randomised, double-blind, placebo-controlled, phase 3 trial[J]. Lancet, 2017, 389(10064): 56-66. DOI: 10.1016/S0140-6736(16)32453-9.
28.Li J, Qin SK, Xu RH, et al. Regorafenib plus best supportive care versus placebo plus best supportive care in Asian patients with previously treated metastatic colorectal cancer (CONCUR): a randomised, double-blind, placebo-controlled, phase 3 trial[J]. Lancet Oncol, 2015, 16(6): 619‐629. DOI: 10.1016/S1470-2045(15)70156-7.
29.Komatsu Y, Doi T, Sawaki A, et al. Regorafenib for advanced gastrointestinal stromal tumors following imatinib and sunitinib treatment: a subgroup analysis evaluating Japanese patients in the phase III GRID trial[J]. Int J Clin Oncol, 2015, 20(5): 905-912. DOI: 10.1007/s10147-015-0790-y.
30.Sun JM, Lee KH, Kim BS, et al. Pazopanib maintenance after first-line etoposide and platinum chemotherapy in patients with extensive disease small-cell lung cancer: a multicentre, randomised, placebo-controlled phase Ⅱ study (KCSG-LU12-07)[J]. Br J Cancer, 2018, 118(5): 648-653. DOI: 10.1038/bjc.2017.465.
31.Motzer RJ, Haas NB, Donskov F, et al. Randomized phase Ⅲ trial of adjuvant pazopanib versus placebo after nephrectomy in patients with localized or locally advanced renal cell carcinoma[J]. J Clin Oncol, 2017, 35(35): 3916-3923. DOI: 10.1200/JCO.2017.73.5324.
32.Kawai A, Araki N, Hiraga H, et al. A randomized, double-blind, placebo-controlled, phase III study of pazopanib in patients with soft tissue sarcoma: results from the Japanese subgroup[J]. Jpn J Clin Oncol, 2016, 46(3): 248-253. DOI: 10.1093/jjco/hyv184.
33.Bois A, Floquet A, Kim J W, et al. Incorporation of pazopanib in maintenance therapy of ovarian cancer[J]. J Clin Oncol, 2014, 32(30): 3374-3382. DOI: 10.1200/JCO.2014.55.7348.
34.Motzer RJ, Hutson TE, Cella D, et al. Pazopanib versus sunitinib in metastatic renal-cell carcinoma[J]. N Engl J Med, 2013, 369(8): 722-731. DOI: 10.1056/NEJMoa1303989.
35.Graaf WT, Blay JY, Chawla SP, et al. Pazopanib for metastatic soft-tissue sarcoma (PALETTE): a randomised, double-blind, placebo-controlled phase 3 trial[J]. Lancet, 2012, 379(9829): 1879-1886. DOI: 10.1016/S0140-6736(12)60651-5.
36.Sternberg CN, Davis ID, Mardiak J, et al. Pazopanib in locally advanced or metastatic renal cell carcinoma: results of a randomized phase III trial[J]. J Clin Oncol, 2010, 28(6): 1061-1068. DOI: 10.1200/JCO.2009.23.9764.
37.Kudo M, Finn RS, Qin SK, et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial[J]. Lancet, 2018, 391(10126): 1163-1173. DOI: 10.1016/S0140-6736(18)30207-1.
38.Thornton K, Kim G, Maher VE, et al. Vandetanib for the treatment of symptomatic or progressive medullary thyroid cancer in patients with unresectable locally advanced or metastatic disease: U.S. Food and Drug Administration drug approval summary[J]. Clin Cancer Res, 2012, 18(14): 3722-3730. DOI: 10.1158/1078-0432.CCR-12-0411.
39.Arnold AM, Seymour L, Smylie M, et al. Phase II study of vandetanib or placebo in small-cell lung cancer patients after complete or partial response to induction chemotherapy with or without radiation therapy: National Cancer Institute of Canada Clinical Trials Group Study BR.20[J]. J Clin Oncol, 2007, 25(27): 4278-4284. DOI: 10.1200/JCO.2007.12.3083.
40.Cheng AL, Kang YK, Lin DY, et al. Sunitinib versus sorafenib in advanced hepatocellular cancer: results of a randomized phase III trial[J]. J Clin Oncol, 2013, 31(32): 4067-4075. DOI: 10.1200/JCO.2012.45.8372.
41.Gounder MM, Mahoney MR, Tine B, et al. Sorafenib for advanced and refractory desmoid tumors[J]. N Engl J Med, 2018, 379(25): 2417-2428. DOI: 10.1056/NEJMoa1805052.
42.Sun L, Roberts AW, Anstee NS, et al. Sorafenib plus intensive chemotherapy in newly diagnosed FLT3-ITD AML: a randomized, placebo-controlled study by the ALLG[J]. Blood, 2023, 142(23): 1960-1971. DOI: 10.1182/blood.2023020301.
43.Brose MS, Nutting CM, Jarzab B, et al. Sorafenib in radioactive iodine-refractory, locally advanced or metastatic differentiated thyroid cancer: a randomised, double-blind, phase 3 trial[J]. Lancet, 2014, 384(9940): 319-328. DOI: 10.1016/S0140-6736(14)60421-9.
44.Bruix J, Takayama T, Mazzaferro V, et al. Adjuvant sorafenib for hepatocellular carcinoma after resection or ablation (STORM): a phase 3, randomised, double-blind, placebo-controlled trial[J]. Lancet Oncol, 2015. 16(13): 1344-1354. DOI: 10.1016/S1470-2045(15)00198-9.
45.Kudo M, Imanaka K, Chida N, et al. Phase III study of sorafenib after transarterial chemoembolisation in Japanese and Korean patients with unresectable hepatocellular carcinoma[J]. Eur J Cancer, 2011, 47(14): 2117-2127. DOI: 10.1016/j.ejca.2011.05.007.
46.Herzog TJ, Scambia G, Kim BG, et al. A randomized phase Ⅱ trial of maintenance therapy with sorafenib in front-line ovarian carcinoma[J]. Gynecol Oncol, 2013, 130(1): 25-30. DOI: 10.1016/j.ygyno.2013.04.011.
47.Shah RR, Morganroth J, Shah DR. Hepatotoxicity of tyrosine kinase inhibitors: clinical and regulatory perspectives[J]. Drug Saf, 2013, 36(7): 491-503. DOI: 10.1007/s40264-013-0048-4.
48.Zheng LW, Hui L, Shu Y, et al. A clinical-pathological analysis of drug-induced hepatic injury after liver transplantation[J]. Transplant Proc, 2007, 39(10): 3287-3291. DOI: 10.1016/j.transproceed.2007.08.096.
49.Ghatalia P, Je YJ, Mouallem M, et al. Hepatotoxicity with vascular endothelial growth factor receptor tyrosine kinase inhibitors: a Meta-analysis of randomized clinical trials[J].Crit Rev Oncol Hematol, 2015, 93(3): 257-276. DOI: 10.1016/j.critrevonc.2014.11.006.
50.Huang L, Wang ZP, Liu J P, et al. Apatinib induces zebrafish hepatotoxicity by inhibiting Wnt ignaling and accumulation of oxidative stress[J]. Environ Toxicol, 2023, 38(11): 2679-2690. DOI: 10.1002/tox.23902.
51.Paludetto MN, Stigliani JL, Robert A, et al. Involvement of pazopanib and sunitinib aldehyde reactive metabolites in toxicity and drug-drug interactions in vitro and in patient samples[J]. Chem Res Toxicol, 2020, 33(1): 181-190. DOI: 10.1021/acs.chemrestox.9b00205.
52.Paludetto MN, Bijani C, Puisset F, et al. Metalloporphyrin-catalyzed oxidation of sunitinib and pazopanib, two anticancer tyrosine kinase inhibitors: evidence for new potentially toxic metabolites[J]. J Med Chem, 2018, 61(17): 7849-7860. DOI: 10.1021/acs.jmedchem.8b00812.
53.Xu CF, Reck BH, Goodman VL, et al. Association of the hemochromatosis gene with pazopanib-induced transaminase elevation in renal cell carcinoma[J]. J Hepatol, 2011, 54(6): 1237-1243. DOI: 10.1016/j.jhep.2010.09.028.
54.Verma S, Kaplowitz N. Diagnosis, management and prevention of drug-induced liver injury[J]. Gut, 2009, 58(11): 1555-1564. DOI: 10.1136/gut.2008.163675.