Welcome to visit Zhongnan Medical Journal Press Series journal website!

Home Articles Vol 33,2024 No.9 Detail

Research of medication rules and multi-pathway mechanism of action in the treatment of vitiligo by traditional Chinese medicine compound patent

Published on Oct. 01, 2024Total Views: 89 times Total Downloads: 25 times Download Mobile

Author: DONG Xiaoyi 1 JIANG Deyou 1, 2 WANG Zeyun 1, 2 MENG Yuxi 1 MIN Zongfu 1 ZHANG Xuan 1 WANG  Shaoying 3 WANG Yuanhong 1, 2

Affiliation: 1. Graduate School of Heilongjiang University of Traditional Chinese Medicine, Harbin 150040, China 2. The First Hospital Affiliated to Heilongjiang University of Traditional Chinese Medicine, Harbin 150040, China 3. Department of Dermatology, Shenzhen Hospital, University of Chinese Academy of Sciences, Shenzhen 518106, Guangdong Province, China

Keywords: Vitiligo Traditional Chinese Medicine compound patent Network pharmacology Molecular docking Medication rules Mechanisms of action

DOI: 10.12173/j.issn.1005-0698.202402095

Reference: Xuan, WANG Shaoying, WANG Yuanhong.Research of medication rules and multi-pathway mechanism of action in the treatment of vitiligo by traditional Chinese medicine compound patent[J].Yaowu Liuxingbingxue Zazhi,2024, 33(9):993-1005.DOI: 10.12173/j.issn.1005-0698.202402095.[Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

Objective  To explore the medication rules and mechanism of action of traditional Chinese medicine compound patent  formulas for vitiligo, and provide ideas for the development and the patent declaration work of new Chinese medicines for vitiligo.

Methods   China Patent Publication Bulletin website, National Knowledge Infrastructure Database, Patent Information Service Platform of China Intellectual Property Right Net (CNIPR), and Baiten Patent Platform were used to search for the patents of traditional Chinese medicine compound formulas for vitiligo from the establishment of the databases to 30th September, 2023. Excel software and Traditional Chinese Medicine Inheritance Computing Platform (TCMICS V3.0) were used to establish a database of compound formulas, and carry out the statistics of frequency, association rules and clustering analysis of the formulas for internal and external prescriptions. The target and mechanism of action of the internal prescriptions of core high-frequency Traditional Chinese Medicine group for the treatment of vitiligo were further explored by Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), Symptom Mapping (Symmap), The Human Gene Database (Genecards), UniversalProtein (UniProt), STRING, Pharmaceutical DataBase (PDB) and other databases as well as software such as R Studio 4.2.2 and Cytoscape 3.9.1, and  AutoDock Vina was used for molecular docking validation.

Results  The internal formulas included 335 patents and the external formulas included 189 patents. The rules of internal and external use are similar. The high-frequency traditional Chinese medicines are Tribuli Fructus, Psoraleae Fructus, Angelicae sinensis, Radix Polygoni Multiflori, Carthami Flos, Angelica dahurica, etc.; the key efficacies of the medicines are based on tonifying the deficiency, activating blood circulation and removing blood stasis; and the properties of the Chinese medicines are the nature of warmth, coldness and flatness, sweetness, bitterness, pungency and attribution to the liver, the spleen, the heart and the kidneys. Commonly used oral medicine pairs are Chuanxiong rhizome-Angelica, Astragalus-Angelica, etc., high-frequency pairs of external medicines are Fructus mume-Psoraleae fructus, cuscuta-Psoraleae fructus, etc.; internal and external clustering of the core drugs are Psoraleae fructus, Tribuli Fructus, Angelica, Polygonum multiflorum, Angelica dahurica, Safflower, and other high-frequency medicines. The key targets of internal patents for the treatment of vitiligo are genes such as albumin, protein kinase B1, cystatinase 3, etc. The main active ingredients of the internal grouping for the treatment of vitiligo may be quercetin, kaempferol, luteolin, etc., and the therapeutic mechanism may be related to the end products of glycosylation/receptor for glycosylation end products, tumour necrosis factor signalling pathway, phosphatidylinositol 3-kinase/protein kinase B and other signalling pathways, and involved in the process of blood lipids and atherosclerosis, human cytomegalovirus infection. The molecular docking results confirmed the docking activity of the herbal components with key receptor proteins.

Conclusion  This study reveals the similarity between the internal and external patented formulas of vitiligo in terms of medication, flavour, and meridian, suggesting that the pathways and indexes such as albumin, interleukin, and tumour necrosis factor of vitiligo patients can be improved by tonifying the liver and kidney, activating blood circulation and removing blood stasis, which also provides a reference for the research and development of new medicines for vitiligo, patent protection, and the use of clinical prescriptions.

Full-text
Please download the PDF version to read the full text: download
References

1.董晓仪, 王绍莹, 杨锐, 等. 中医药调控白癜风相关信号通路研究进展[J]. 中国实验方剂学杂志, 2023, 29(24): 233-240. [Dong XY, Wang SY, Yang R, et al. Traditional Chinese medicine regulates signaling pathways to treat vitiligo: a review[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2023, 29(24): 233-240.] DOI: 10.13422/j.cnki.syfjx.20232198.

2.陈乐乐, 陈曙光, 周祥禄, 等. 白癜风发病机制及中医药防治研究进展[J]. 中国实验方剂学杂志, 2021, 27(14): 242-250. [Chen LL, Chen SG, Zhou XL, et al. Research progress on the pathogenesis of vitiligo and the prevention and treatment with traditional Chinese medicine [J]. Chinese Journal of Experimental Traditional Medical Formulae , 2021, 27(14): 242-250.] DOI: 10.13422/j.cnki.syfjx.20211492.

3.王远红, 杨锐, 张思远, 等. 中医药治疗白癜风临床研究进展[J]. 中华中医药学刊, 2022, 40(4): 15-18. [Wang YH, Yang R, Zhang SY, et al. Research progress on the clinical treatment of vitiligo with traditional Chinese medicine[J]. Chinese Journal of Traditional Chinese Medicine and Pharmacy, 2022, 40(4): 15-18.] DOI: 10.13193/j.issn.1673-7717.2022.04.004.

4.白明, 刘田园, 苗明三. 基于数据挖掘的中药治疗白癜风用药规律分析[J]. 中国药师, 2020, 23(2): 294-298. [Bai M, Liu TY, Miao MS. Analysis of the regularity of traditional Chinese medicine treatment for vitiligo based on data mining [J]. China Pharmacist, 2020, 23(2): 294-298.] DOI: 10.3969/j.issn.1008-049X.2020.02.019.

5.高松林,韦柳婷,覃雁,等.专利中药复方治疗功能性便秘的用药规律及机制研究[J].中药新药与临床药理, 2023, 34(6): 796-805. [Gao SL, Wei LT, Qin Y, et al. Study on the medication rules and mechanism of patented traditional Chinese medicine compound in the treatment of functional constipation[J]. Traditional Chinese Drug Research and Clinical Pharmacology, 2023, 34(6): 796-805.] DOI: 10.19378/j.issn.1003-9783.2023.06.011.

6.杨宇, 黄兴琳, 江忠敏, 等. 中药红花化学成分与药理作用研究新进展[J]. 中华中医药学刊, 2023, 41(10): 119-126. [Yang Y, Huang XL, Jiang ZM, et al. New progress in the study of chemical components and pharmacological effects of Carthamus tinctorius[J]. Chinese Journal of Traditional Chinese Medicine and Pharmacy, 2023, 41(10): 119-126.] DOI:10.13193/j.issn.1673-7717.2023.10.024.

7.罗益远, 刘娟秀, 刘廷, 等. UPLC-MS/MS法同时测定何首乌中二苯乙烯、蒽醌、黄酮及酚酸类成分[J]. 质谱学报, 2016, 37(4): 327-335. [Luo YY, Liu JX, Liu  T, et al. Simultaneous determination of diphenylethylene, anthraquinone, flavonoids, and phenolic acid components in Polygonum multiflorum by UPLC-MS/MS[J]. Mass Spectrometry Journal, 2016, 37(4): 327-335.] DOI: 10.7538/zpxb.youxian.2016.0016.

8.Zhang ZY, Liang Y, Huang XY, et al. Metabolomics profiling of Polygoni Multiflori Radix and Polygoni Multiflori Radix preparata extracts using UPLC-Q/TOF-MS[J]. Chin Med, 2019, 14: 46. DOI: 10.1186/s13020-019-0268-3.

9.解世全, 李瑞海. 不同产地蒺藜黄酮成分比较[J]. 中国药师, 2015, 18(10): 1671-1673. [Xie SQ, Li RH. Comparative study on the flavonoid components of Tribulus terrestris from different origins[J]. China Pharmacist, 2015, 18(10): 1671-1673.] DOI: 10.3969/j.issn.1008-049X.2015.10.012.

10.周爱德, 李强, 雷海民. 白芷化学成分的研究[J]. 中草药, 2010, 41(7): 1081-1083. DOI: CNKI:SUN: ZCYO.0.2010-07-013.

11.韩炜, 邢燕, 康廷国. 红花地上部分化学成分研究 [J]. 中华中医药学刊, 2010, 28(4): 881-882. [Han W, Xing  Y, Kang TG. Research on the chemical components of Carthamus tinctorius above ground[J]. Chinese Archives of Traditional Chinese Medicine, 2010, 28(4): 881-882.] DOI: CNKI:SUN:ZYHS.0.2010-04-102.

12.Zhao CK, Yuan J, Lu FC. Angelica stem: a potential low-cost source of bioactive phthalides and phytosterols[J]. Molecules, 2018, 23(12): 3065. DOI: 10.3390/molecules23123065.

13.Mitova M, Taskova R, Popov S, et al. GC/MS analysis of some bioactive constituents from Carthamus lanatus L.[J]. Z Naturforsch C J Biosci, 2003, 58(9-10): 697-703. DOI: 10.1515/znc-2003-9-1018.

14.杨波涛, 杨柳, 查旭山. 中药色象理论与临床研究进展 [J]. 中华中医药杂志, 2022, 37(4): 2137-2139. [Yang BT, Yang L, Cha X. Research progress on the theory of color image and clinical study of traditional Chinese medicine[J]. Chinese Journal of Traditional Chinese Medicine, 2022, 37(4): 2137-2139.] http://qikan.cqvip.com/Qikan/Article/Detail?id=7107261404.

15.王月莹, 刘斌, 雷双媛, 等. 补骨脂素对A375细胞黑素合成的影响及p38-MAPK信号通路调控机制的研究[J]. 中药材, 2018, 41(10): 2408-2412. [Wang YY, Liu B, Lei SY, et al. Research on the influence of psoralen on melanin synthesis in A375 cells and the regulatory mechanism of the p38-MAPK signaling pathway[J]. Chinese Medicinal Materials, 2018, 41(10): 2408-2412.] DOI: 10.13863/j.issn1001-4454.2018.10.032.

16.彭怡, 李伟佳, 黄巧, 等. 基于网络药理学和分子对接探讨蒺藜治疗白癜风的作用机制[J]. 皮肤性病诊疗学杂志, 2024, 31(3): 180-189. [Peng Y, Li WJ, Huang Q, et al. Discussion on the mechanism of Tribulus terrestris in treating vitiligo based on network pharmacology and molecular docking[J]. Dermatovenereology, 2024, 31(3): 180-189.] DOI: 10.3969/j.issn.1674-8468.2024.03.006.

17.王红娟, 胡雯, 雷子贤, 等. 异鼠李素抑制H2O2诱导的黑素细胞ROS水平升高和细胞活性降低[J]. 中国组织化学与细胞化学杂志, 2021, 30(3): 240-245. [Wang HJ, Hu W, Lei ZX, et al. Research on the inhibitory effect of emodin on the increase of ROS level and the decrease of cell activity in melanocytes induced by H2O2[J]. Chinese Journal of Tissue Cell and Molecular Biology, 2021, 30(3): 240-245. ] DOI: 10.16705/j.cnki.1004-1850.2021.03.005.

18.向璐, 张巧艳, 赵琦明, 等. 黄芪-当归化学成分、药理作用及临床应用的研究进展[J].中草药, 2022, 53(7): 2196-2213. [Xiang L, Zhang QY, Zhao QM, et al. Research progress on the chemical components, pharmacological effects, and clinical application of Astragalus and Angelica sinensis[J]. Chinese Traditional and Herbal Drugs, 2022, 53(7): 2196-2213.] DOI: 10.7501/j.issn.0253-2670.2022.07.030.

19.姜泽群, 吴琼, 徐继敏, 等. 中药何首乌促进黑色素生成的作用机理研究[J]. 南京中医药大学学报, 2010, 26(3): 190-192, 241-242. [Jiang ZQ, Wu Q, Xu JM, et al. Research on the mechanism of Polygonum multiflorum promoting melanin production[J]. Journal of Nanjing University of Chinese Medicine, 2010, 26(3): 190-192, 241-242.] DOI: 10.3969/j.issn.1000-5005.2010.03.010.

20.Xie YH, Mei XY, Shi WM. Kaempferol promotes melanogenesis and reduces oxidative stress in PIG1 normal human skin melanocytes[J]. J Cell Mol Med, 2023, 27(7): 982-990. DOI: 10.1111/jcmm.17711.

21.袁可欣, 谭艺, 张成玲, 等. 基于网络药理学和分子对接的“当归-川芎”药对作用机制研究[J].西南大学学报(自然科学版), 2021, 43(10): 77-83. [Yuan KX, Tan Y, Zhang CL, et al. Research on the mechanism of the "Angelica sinensis-Ligusticum chuanxiong" drug pair based on network pharmacology and molecular docking[J]. Journal of Southwest University (Natural Science Edition), 2021, 43(10): 77-83.] DOI: 10.13718/j.cnki.xdzk.2021.10.010.

22.李晓龙, 信如娟, 黄皓, 等. 基于网络药理学和动物实验探讨复方红花补蒺颗粒治疗白癜风的作用机制 [J]. 山西医科大学学报, 2023, 54(6): 814-822. [Li  XL, Xin RJ, Huang H, et al. Discussion on the mechanism of the compound formula of Carthamus tinctorius and Tribulus terrestris in treating vitiligo based on network pharmacology and animal experiments[J]. Journal of Shanxi Medical University, 2023, 54(6): 814-822.] DOI: 10.13753/j.issn.1007-6611.2023.06.014.

23.Miniati A, Weng Z, Zhang B, et al. Stimulated human melanocytes express and release interleukin‐8, which is inhibited by luteolin: relevance to early vitiligo[J]. Clin Exp Dermatol, 2014, 39(1): 54-57. DOI: 10.1111/ced.12164.

24.田硕, 武晏屹, 白明, 等. 白芷治疗白癜风作用机制的网络药理学分析[J]. 中药新药与临床药理, 2021, 32(8): 1147-1153. [Tian S, Wu YJ, Bai M, et al. Network pharmacology analysis of the mechanism of Angelica dahurica in treating vitiligo[J]. Chinese Journal of New Drugs and Clinical Pharmacology, 2021, 32(8): 1147-1153.] DOI: 10.19378/j.issn.1003-9783.2021.08.012.

25.杨亚湉, 王瑞, 钱程程, 等. 乌梅化学成分、药理作用研究进展及质量标志物预测[J]. 中成药, 2023, 45(5): 1583-1588. [Yang YT, Wang R, Qian CC, et al. Research progress on the chemical components, pharmacological effects, and quality markers prediction of Prunus mume[J]. Chinese Patent Medicine, 2023, 45(5): 1583-1588.] DOI: 10.3969/j.issn.1001-1528.2023.05.032.

26.吕凯峰, 王远红, 张伟, 等. 基于网络药理学探究“菟丝子-淫羊藿”治疗白癜风的作用机制[J]. 中国医药导报, 2022, 19(5): 4-8, 17. [Lyu KF, Wang  YH, Zhang W, et al. Discussion on the mechanism of the "Cuscuta seed-Epimedium" treatment for vitiligo based on network pharmacology [J]. Chinese Medical Guide, 2022, 19(5): 4-8,17.] http://qikan.cqvip.com/Qikan/Article/Detail?id=7106725863.

27.王解, 彭子辉, 王润和, 等. 紫草素对白癜风小鼠黑素细胞功能的影响[J]. 中成药, 2023, 45(10): 3452-3456. [Wang J, Peng ZH, Wang RH, et al. Research on the influence of shikonin on the function of melanocytes in vitiligo mice[J]. Chinese Patent Medicine, 2023, 45(10): 3452-3456.] DOI: 10.3969/j.issn.1001-1528.2023.10.051.

28.郭晓瑞, 王娟. 血浆白蛋白水平对进展期白癜风小剂量泼尼松治疗效果的影响[J]. 中国临床医生杂志, 2023, 51(11): 1353-1356. [Guo XR, Wang J. Research on the influence of plasma albumin levels on the treatment effect of low-dose prednisone in progressive vitiligo[J]. Chinese Journal of Clinical Doctors, 2023, 51(11): 1353-1356.] DOI: 10.3969/j.issn.2095-8552.2023.11.025.

29.Chen JR, Li SL, Li CY. Mechanisms of melanocyte death in vitiligo[J]. Med Res Rev, 2021, 41(2): 1138-1166. DOI: 10.1002/med.21754.

30.Singh M, Jadeja SD, Vaishnav J, et al. Investigation of the role of interleukin 6 in vitiligo pathogenesis[J]. Immunological investigations, 2022, 51(1): 120-137. DOI: 10.1080/08820139.2020.1813756.

31.Almasi-Nasrabadi M, Amoli MM, Robati RM, et al. Is the+ 405 G/C single nucleotide polymorphism of the vascular endothelial growth factor (VEGF) gene associated with late-onset vitiligo?[J]. Int J Immunogenet, 2019, 46(4): 241-246. DOI: 10.1111/iji.12432. 

32.Guarneri F, Custurone P, Papaianni V, et al. Involvement of RAGE and oxidative stress in inflammatory and infectious skin diseases[J]. Antioxidants, 2021, 10(1): 82. DOI: 10.3390/antiox10010082.

33.Laddha NC, Dwivedi M, Begum R. Increased tumor necrosis factor (TNF)-α and its promoter polymorphisms correlate with disease progression and higher susceptibility towards vitiligo[J]. PloS One, 2012, 7(12): e52298. DOI: 10.1371/journal.pone.0052298.

34.Zhang JZ, Hu W, Wang P, et al. Research progress on targeted antioxidant therapy and vitiligo[J].Oxid Med Cell Longev, 2022, 2022: 1821780. DOI: 10.1155/2022/1821780.

35.Gomes IA, de Carvalho FO, de Menezes AF, et al. The role of interleukins in vitiligo: a systematic review[J]. J Eur Acad Dermatol Venereol, 2018, 32(12): 2097-2111. DOI: 10.1111/jdv.15016.

36.Singh RK, Lee KM, Vujkovic-Cvijin I, et al. The role of IL-17 in vitiligo: a review[J]. Autoimmun Rev, 2016, 15(4): 397-404. DOI: 10.1016/j.autrev.2016.01.004.

Popular papers
Last 6 months