近年来中药的安全性越来越引起人们的重视,而药物是否会引起肝损伤是药物安全性研究的重点,对中药的开发及使用具有重要意义。免疫组织化学法可对抗原进行定位、定性及定量研究,在药物肝毒性的研究中起到不可忽视的作用。通过查阅历年来有关中药引起肝毒性的报道及其发生机制,总结归纳了免疫组织化学法在中药肝毒性研究中的应用,为免疫组织化学法在中药安全性评价中的应用提供参考。
随着中药研究的深入,学者们对中药所产生的肝毒性问题越发关注。因大多数中药较为温和且作用广泛,使得在目前药物临床前评价体系下,单纯依靠通过提高服用剂量可能难以获得与临床一致的毒性特征,并且考虑到肝脏功能的复杂性和强大的代偿能力,现有毒性评价体系难以在早期检测和确定中药的肝毒性[1],而在中药及其制剂的安全性研究中,药物是否会诱导肝损伤的问题又显得尤为重要[2]。能引起肝毒性的中药大致分为中毒性和变态反应性两类。中毒性肝损伤是中药及其代谢物直接损害肝脏所致,可细分为肝细胞型、胆汁淤积型和混合型肝损伤[2-3]。变态型肝损伤和人体的特异性反应有关,中药或其代谢物与肝细胞中的大分子物质结合成半抗原载体复合物获得抗原性,通过免疫反应引起肝损伤[4]。
现有的中药肝毒性评价方法多以肝细胞直接毒性为考察指标,目前在临床和临床前研究中能够检测到的药物肝毒性进程大多已经比较严重[5],如有肝毒性的中药在极低的剂量下就能够诱导肝脏毒性,而不出现明显的急性器官损伤,当丙氨酸氨基转移酶(ALT)/天冬氨酸氨基转移酶(AST)、组织病理学等传统肝毒性评价指标改变时,肝脏已发生实质性结构损伤,其安全性风险具有隐蔽性和机体特异性,使得肝毒性早期的敏感指标难以寻找。因此,早期肝功能受损指标的发现对于药物肝毒性的早期预警尤为重要。在药物肝毒性的研究中,肝细胞的能量失衡、极性改变等功能异常变化早于其细胞结构损伤,建立这些功能性指标的检测与评价技术是早期发现中药肝毒性的技术突破点,而这种符合中药特点的肝毒性早期发现关键技术是中药安全用药风险控制研究的重要一环。
免疫组织化学方法具有特异性强、敏感性高、定位准确、形态与功能相结合等优点,使其越来越方便地应用于常规病理诊断工作中,对于病理学更深入的研究具有重要意义。在中药的肝毒性研究中,应用免疫组织化学方法检测肝损伤中相关指标,对研究早期药源性肝损伤起到的作用不可忽视。因此,对近年来免疫组织化学方法在中药肝毒性研究中的应用进行归纳总结,以期为免疫组织化学法在中药安全性研究的应用中提供一定的参考。
1 中药诱导肝毒性机制
中药的肝损伤机制较为复杂,随着研究的推进,中药及其制剂引起肝损伤的研究多从免疫毒性、代谢毒性、线粒体功能障碍和氧化应激等方面入手,深入探讨药物的肝毒性[6-9]。而引起肝损伤的主要中药成分大致包括苷类、萜类、生物碱类、毒蛋白类等其他毒性成分[10],其毒性成分所涉及的靶点包括核受体、代谢酶、转运体和信号通路等[11-12]。通过免疫组织化学法辅助检测这些早期肝细胞功能性指标,可及时的了解中药肝毒性的机制。
2 免疫组织化学在肝损伤中的应用
2.1 免疫组织化学在特异性肝损伤的应用
免疫毒性肝损伤是特异性肝损伤的一种,主要为免疫介导的过敏反应[13-14]。由药物或其代谢物与肝细胞中的大分子物质结合成半抗原载体复合物获得抗原性,通过免疫反应引起肝损伤。如雷公藤激活高迁移率族蛋白与Toll样受体4(TLR4) 结合形成的复合物与核转录因子κB(NF-κB)结合,刺激白细胞介素1β(IL-1β)、白细胞介素2(IL-2)、肿瘤坏死因子α(TNF-α)的释放,促使肝细胞产生特异性肝损[15],又如刀豆蛋白A诱导免疫介导的肝损伤等[16-17]。也有研究表明,抑制NF-κB,同时激活相关炎症因子也可能是导致免疫性特异质肝损伤发生的原因[18]。
免疫组织化学法在免疫介导的肝损伤的应用中,NF-κB、核受体转录因子、炎症因子等是检测的重要指标。如免疫组织化学法检测肝组织过氧化物酶体增殖物激活受体γ(PPAR-γ)和NF-κB p65的表达,探讨PPAR-γ依赖的何首乌免疫性特异质肝损伤机制[18]。检测肝组织NF-κB、TNF-α蛋白的表达,发现降低NF-κB、TNF-α mRNA和蛋白的表达,对免疫肝损伤小鼠肝脏能起到保护作用[19-20]。免疫组织化学法在检测TLR4/髓样分化因子88(MyD88)/NF-κB信号通路相关指标的应用中发现,抑制TLR4/MyD88/NF-κB信号通路,可改善大鼠的肝损伤程度等[21-23]。
2.2 免疫组织化学在代谢性肝损伤的应用
中药某些特定成分在肝脏代谢过程中因酶的催化而转化成潜在的毒性化合物,对肝脏造成代谢性肝损伤[24]。这类特定成分在肝脏代谢酶的转化下生成反应性代谢中间体,与细胞中生物大分子发生共价修饰,从而引起药物代谢酶的不可逆抑制,产生严重的药物相互作用或抗原抗体反应,进而诱导肝毒性,该过程与细胞色素P450(CYP450)酶系统的介导密切相关[25-27]。如黄药子经CYP450酶代谢产生的代谢产物蓄积,使胞质膜和细胞器脂质过氧化从而导致肝损伤[28],雷公藤内酯醇通过降低CYP450亚型的转录及蛋白水平的表达而引起肝毒性[29],菊三七生物碱经CYP450 酶氧化脱氢,通过不可逆的结合反应逐步导致肝细胞功能紊乱,最终造成细胞坏死和组织损伤[30]。雷公藤甲素通过抑制细胞色素P450 3A4酶减慢对自身的代谢,使其产生肝损伤等[31]。
免疫组织化学法在代谢性肝损伤的应用中,CYP酶系统是研究中药代谢毒性的常见指标。如在黄药子配伍甘草减毒机制的研究中,应用免疫组织化学法检测肝脏CYP1A2、CYP2E1蛋白,研究黄药子配伍甘草对氧化应激及大鼠肝脏CYP1A2、CYP2E1蛋白的表达[32-33]。免疫组织化学法检测肝损伤大鼠肝组织中CYP1A2、CYP2E1蛋白的表达,探讨异甘草酸镁对四氯化碳致急性肝损伤的影响等[34]。
2.3 免疫组织化学在氧化应激性肝损伤的应用
肝细胞具有较强的抗氧化功能,但脂质过氧化水平过高、谷胱甘肽(GSH) 及GSH 相关酶水平异常、抗氧化相关酶水平低下等均容易导致氧化应激状态,并促使细胞膜脂质过氧化、细胞器功能异常、炎症反应,出现核氧化损伤等[35]。可引起氧化应激型肝损伤的中药如柴胡总皂苷可诱导肝脏中丙二醛(MDA)的含量增加,并且降低GSH过氧化物酶活性[36],麻黄碱诱导人肝星状细胞氧化应激介导的线粒体自噬[37],雷公藤多苷片抑制NF-E2相关因子2(Nrf2)/血红素氧合酶1(HO-1)氧化应激通路、介导脂质过氧化反应诱导肝细胞凋亡[38],黄药子中的二萜内酯类成分诱导的急性肝毒性[39],苦参碱可显著下调人正常肝细胞内Nrf2的表达,靶向增加Kelch样ECH联合蛋白1(Keap1)/Nrf2 复合物的形成,抑制下游蛋白HO-1和氧化还原酶-1(NQO-1)的表达,增强细胞内活性氧簇(ROS)水平,降低超氧化物歧化酶(SOD)和GSH活性诱导肝细胞凋亡等[40],均可使肝细胞处于氧化应激状态,导致氧化应激性肝损伤。在氧化应激性肝损伤的研究中,转录因子Nrf2是细胞防御化学/氧化应激的重要调节因子之一[41-42],可利用免疫组织化学法对Nrf2的检测,研究氧化应激性肝损伤的改善情况。如免疫组织化学法检测肝脏组织Nrf2/NQO1的表达及定位,研究内质网应激抑制剂4-苯基丁酸对急性汞暴露小鼠肝脏损伤的影响[43]。免疫组织化学及免疫印迹法探讨银杏叶片调控Nrf2-Keap1-抗氧化反应元件(ARE)信号通路在燃煤污染型地方性砷中毒大鼠肝损伤中的作用[44],检测细胞内Nrf2的分布,探讨臭氧化盐水对肝细胞Keap1/Nrf2/ARE通路的影响等[45]。
PPAR-α对药物性肝毒性等具有调控作用,当激活PPAR-α后,会抑制肝细胞缺氧/复氧损伤后SOD和GSH的失活,减少ROS生成并加速其消除,同时降低细胞内MDA的含量,抑制肝细胞缺氧/复氧损伤的脂质过氧化反应[46]。谷胱甘肽过氧化物酶(GSH-Px)能催化GSH变为氧化型谷光甘肽(GSSG),过氧化氢酶(CAT)、GSSG能使有毒的过氧化物还原成无毒的羟基化合物,同时促进H2O2的分解,从而保护细胞膜的结构及功能不受过氧化物的干扰及损害。免疫组织化学在氧化应激性肝损伤的应用中,常以PPAR、GSH-Px、CAT等作为检测指标。如免疫组织化学PAP法探讨小鼠各组织中GSH-Px的分布[47],检测GSH-Px考察Nrf2/Keap1/ARE信号通路在燃煤型砷中毒大鼠肝损伤中的作用[48],通过检测Nrf2、Keap1、SOD、CAT、GSH-Px、HO1蛋白的表达考察黄连素对2型糖尿病大鼠肝脏Nrf2介导的氧化应激反应的影响[49],检测PPAR-γ的表达,探讨沙棘多糖对急性肝损伤小鼠氧化应激的抑制作用及沙棘多糖对B淋巴细胞瘤-2基因(Bcl-2)/Bcl-2相关X蛋白(Bax)和PPAR-γ的调控等[50]。
2.4 免疫组织化学在肝细胞凋亡中的应用
肝细胞凋亡是药物引起肝损伤的原因之一,可被多种肝损伤机制所诱导。而中药引起此类肝损伤的主要原因是肝细胞凋亡失调,其主要成分有毒蛋白、萜类化合物、大黄素型蒽醌类成分等[51],药物诱导肝细胞凋亡的途径有TNF-α系统、FasL/Fas系统等[52-53]。FasL是肿瘤坏死因子超家族中的一员,主要集中在活化的T淋巴细胞表面[54]。FasL相应的受体为Fas,Fas与Fas配体(FasL)结合,从而诱导表达Fas 的细胞凋亡[55-57]。通过Fas/FasL信号通路检测肝组织中TNF-α、Fas、FasL的表达,可直观观察肝细胞凋亡的程度,及推断受试药物在改善动物肝损伤中所起到的作用。
免疫组织化学在肝细胞凋亡导致肝损伤的应用中,可对TNF-α系统、FasL/Fas系统中相关蛋白及因子指标进行检测,如在扶正祛邪方对小鼠肝损伤的作用机制研究中采用免疫组织化学法,观测肝组织中TNF-α、FasL表达情况,探讨扶正祛邪方对小鼠肝损伤的改善作用[58]。太旨颗粒对非酒精性脂肪肝作用的研究中,基于Fas/FasL信号通路,通过免疫组织化学法探讨太旨颗粒对非酒精性脂肪肝大鼠的保护作用及机制的研究[59]。检测肝脏组织中TNF-α的表达,研究葛根提取物对酒精性肝损伤大鼠肝组织TNF-α表达变化等[60]。
2.5 免疫组织化学在内质网应激性肝损伤中的应用
肝细胞内质网发生应激反应时,将会诱导表达C/EBP 同源性蛋白(CHOP),激活内质网膜蛋白激酶、活化转录因子等[61]。若内质网的这种应激反应得不到改善,可能导致肝细胞受损,甚至使肝细胞发生凋亡[62]。如蛇床子素能够诱导CHOP、内质网膜蛋白激酶的过表达,导致肝细胞发生凋亡[63]。异烟肼导致药物性肝损伤大鼠肝脏组织中CHOP、半胱氨酸蛋白水解酶12(Caspase-12)表达上调,促使细胞凋亡显著增加[64]。氧化苦参碱通过TNF-α介导的c-Jun氨基末端激酶(JNK)信号通路诱导肝损伤等[65]。
免疫组织化学法在内质网应激性肝损伤的研究中可对CHOP等指标进行检测。如免疫组织化学法检测内质网应激(ERS)标志性蛋白GRP78和CHOP表达情况,探究蚯蚓活性组分对四氯化碳诱导小鼠内质网应激所致急性肝损伤的保护作用[66],检测CHOP蛋白表达水平,探讨柴胡皂苷b2抑制内质网应激信号通路减轻四氯化碳致小鼠急性肝损伤的作用[67],在内质网应激介导小鼠急性汞中毒性肝损伤研究中,检测内质网应激特异性蛋白如重链结合蛋白与CHOP等[68]。
2.6 免疫组织化学在线粒体功能障碍性肝损伤中的应用
线粒体功能障碍会引起肝细胞磷酸腺苷缺乏、ROS增加,线粒体膜电位降低和线粒体DNA损伤,促使肝细胞凋亡与炎症产生,严重影响到肝细胞生物合成和解毒功能等[69-70]。线粒体损伤是许多药物毒性作用的重要表现形式,研究结果提示线粒体可能是某些药物毒性的主要靶标[71-72]。如异烟肼诱导的肝细胞线粒体氧化损伤,使肝细胞线粒体ROS水平和MDA含量显著升高,GSH含量及SOD活性明显降低[73]。柴胡皂苷A引发 Bax和促凋亡蛋白Bak从胞质溶胶转移到外膜,导致线粒体功能和膜电位降低,释放凋亡因子诱导肝星状细胞的凋亡[74],黄连碱通过线粒体损伤及内质网应激蛋白激酶R样内质网激酶(PERK)-转录激活因子4(ATF4)-CHOP通路导致L02细胞毒性[75],黄药子中二萜内酯类成分使大鼠肝细胞中线粒体肿胀、髓样改变[76],千里光碱诱导线粒体膜电位丧失,激活Caspase-3,诱导肝细胞凋亡等[77]。
免疫组织化学法在线粒体功能障碍性肝损伤应用中,检测指标主要为一些蛋白和凋亡因子的表达。如免疫组织化学法检测肝组织诱导型一氧化氮合成酶(iNOS)蛋白表达,探讨NO对双氯芬酸钠致急性肝损伤的促进作用[78]。检测肝组织Bcl-2和Caspase-3的表达评价羟考酮预处理对大鼠肠缺血再灌注时线粒体途径肝细胞凋亡的影响[79],检测哺乳动物信号调节子2蛋白的表达探讨丙泊酚抑制小鼠酒精性肝损伤机制[80]。检查Bcl-2、Bax在肝组织中表达探讨非酒精性脂肪肝大鼠肝细胞凋亡与线粒体膜通透性转换孔开放的关系等[81]。
3 结语
在中药及其制剂的安全性研究中,可引起肝损伤的机制类型有多种,若能及时了解和掌握中药肝损伤的机制并做出判断,对药物的安全性研究具有十分重要的意义。采用免疫组织化学法检测肝组织中相关指标,为早期药物肝毒性的研究起到了不可忽视作用。且免疫组织化学法简单易行,不受脏器组织保存条件的限制,为中药及其制剂在安全性研究中提供了一定的参考依据。
1. 江振洲, 王欣之, 孙丽新, 等. 中药毒性评价的技术方法与应用[J]. 药学进展, 2013, 37(11): 545-554. [Jiang ZZ, Wang XZ, Sun LX, et al. Technical methods and application of traditional Chinese medicine toxicity evaluation[J]. Progress in Pharmaceutical Science, 2013, 37(11): 545-554.] http://www.cnki.com.cn/Article/CJFDTotal-YXJZ201311001.htm.
2. 彭朋, 元唯安. 中药药源性肝毒性的研究进展[J]. 药物评价研究, 2021, 44(8): 1783-1792. [Peng P, Yuan WA. Research progress on drug-induced hepatotoxicity of Chinese materia medica[J]. Drug Evaluation Research, 2021, 44(8): 1783-1792.] DOI: 10.7501/j.issn.1674-6376. 2021.08.033.
3. 李芝奇, 范琦琦, 陈美琳, 等. 中药肝毒性的物质基础与作用机制研究进展[J]. 中草药, 2021, 52(13): 4082-4095. [Li ZQ, Fan QQ, Chen ML, et al. Material basis for liver toxicity of traditional Chinese medicine and research progress on its mechanism[J]. Chinese Traditional and Herbal Drugs, 2021, 52(13): 4082-4095. ] DOI: 10.7501/j.issn.0253-2670.2021.13.032.
4. 李晓菲, 李娜, 涂灿, 等. 基于内毒素特异质模型的生首乌与制首乌肝毒性比较研究[J]. 中草药, 2015, 46(10): 1481-1486. [Li XF, Li N, Tu C, et al. Comparison of crude and prepared Polygonum multiflorum-induced idiosyncratic hepatotoxicity based on lipopolysaccharide model[J]. Chinese Traditional and Herbal Drugs, 2015, 46(10): 1481-1486.] DOI: 10.7501/j.issn.0253-2670. 2015.10.014.
5. 李梦楠, 王玉平, 周永宁. 药物性肝损伤的研究进展[J]. 胃肠病学和肝病学杂志, 2016, 25(7): 828-831. [Li MN, Wang YP, Zhou YN. Research progress of drug-induced liver injury[J]. Chinese Journal of Gastroenterology and Hepatology, 2016, 25 (7): 828-831.] DOI: 10.3969/j.issn.1006-5709.2016.07.027.
6. 郑恬, 孙志广. 中药肝损伤机制的研究进展[J]. 广西中医药, 2021, 44(4): 65-67. [Zheng T, Sun ZG. Research progress of liver injury mechanism of traditional Chinese medicine[J]. Guangxi Journal of Traditional Chinese Medicine, 2021, 44(4): 65-67.] DOI: 10.3969/j.issn. 1006-5709.2016.07.027.
7. 胡聪, 黎红维, 吴琳静, 等. 基于代谢组学的中药肝毒性研究进展[J]. 中国中药杂志, 2020, 45(11): 2493-2501. [Hu C, Li HW, Wu LJ, et al. Research progress on hepatotoxicity of traditional Chinese medicine based on metabonomics[J]. China Journal of Chinese Materia Medica, 2020, 45(11): 2493-2501.] DOI: 10.19540/j.cnki.cjcmm.20200322.201.
8. 王玉琳, 柳雨亭, 陶艳艳, 等. 以线粒体为靶点筛选中药抗肝毒性的活性成分研究思路与方法[J]. 中国中药杂志, 2021, 46(2): 306-311. [Wang YL, Liu YT, Tao YY, et al. Research ideas and method on screening active components of traditional Chinese medicine against hepatotoxicity with mitochondria as target[J]. China Journal of Chinese Materia Medica, 2021, 46(2): 306-311.] DOI: 10.19540/j.cnki.cjcmm.20200904.601.
9. 羊菲, 金若敏. 基于中药特点的肝毒性研究与思考[J]. 上海中医药大学学报, 2020, 34(1): 1-10. [Yang F, Jin RM. Research and considerations on hepatotoxicity based on characteristics of Chinese materia medica[J]. Acta Journal of Shanghai Universitatis of Traditionis Chinses Medicine, 2020, 34(1): 1-10.] DOI: 10.16306/j.1008-861x.0.2020.01.001.
10.马利节, 孔晓妮, 高月求. 中草药相关肝损伤研究进展[J]. 中西医结合肝病杂志, 2021, 31(7): 665-668. [Ma LJ, Kong XN, Gao YQ. Research progress of liver injury related to Chinese herbal medicine[J]. Chinese Journal of Integrated Traditional and Western Medicine on Liver Diseases, 2021, 31(7): 665-668.] DOI: 10.3969/j.issn.1005-0264.2021.07.025.
11.Chen YK, Tang Y, Guo CX, et al. Nuclear receptors in the multidrug resistance through the regulation of drug-metabolizing enzymes and drug transporters[J]. Biochem Pharmacol, 2012, 83(8): 1112-1126. DOI: 10.1016/j.bcp. 2012.01.030.
12.王钱, 周文静, 周荣荣, 等. 基于整合药理学逍遥散治疗雷公藤肝毒性的"中药-化学成分关键靶标-通路"的研究[J]. 中华中医药杂志, 2020, 35(1): 415-419. [Wang Q, Zhou WJ, Zhou RR, et al. Study on the 'traditional Chinese medicine-chemical component-target-pathway' of Xiaoyao Powder in the treatment of Tripterygium wilfordii hepatotoxicity based on integrated pharmacology[J]. China Journal of Traditional Chinese Medicine and Pharmacy, 2020, 35(1): 415-419.] http://www.cnki.com.cn/Article/CJFDTotal-BXYY202001111.htm.
13.李芝奇, 赵霞, 徐玥, 等. 中药肝毒性评价的现状与挑战[J]. 中华中医药杂志, 2020, 35(10): 4827-4835. [Li ZQ, Zhao X, Xu Y, et al. Current status and challenges of evaluation of hepatotoxicity of traditional Chinese medicine[J]. China Journal of Traditional Chinese Medicine and Pharmacy, 2020, 35(10): 4827-4835.] https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=BXYY202010016.
14.Zhu J, Seo JE, Wang S, et al. The development of a database for herbal and dietary supplement induced liver toxicity[J]. Int J Mol Sci, 2018, 19(10): 2955. DOI: 10.3390/ijms19102955.
15.董捷鸣, 章从恩, 于小红, 等. HMGB1介导的炎症通路在雷公藤致大鼠肝损伤中的作用研究[J]. 中国药房, 2018, 29(5): 633-636. [Dong JM, Zhang CE, Yu XH, et al. Study on the effects of HMGB1-mediated inflammatory pathway on liver injury induced by tripterygium wilfordii[J]. China Pharmacy, 2018, 29(5): 633-636.] DOI: 10.6039/j.issn.1001-0408.2018.05.14.
16.Feng Q, Yao JC, Zhou G, et al. Quantitative proteomic analysis reveals that arctigenin alleviates concanavalin A-induced hepatitis through suppressing immune system and regulating autophagy[J]. Front Immunol, 2018, 9: 1881. DOI: 10.3389/fimmu.2018.01881.
17.Zhou YQ, Weng XF, Dou R, et al. Betulin from Hedyotishedyotidea ameliorates concanavalin A-induced and T cell-mediated autoimmune hepatitis in mice[J]. Acta Pharmacol Sin, 2017, 38(2): 201-210. DOI: 10.1038/aps.2016.102.
18.贺兰芝, 尹萍, 孟雅坤, 等. PPAR-γ依赖的何首乌免疫性特异质肝损伤机制研究[J]. 药学学报, 2017, 52(7): 1027-1032. [He LZ, Yin P, Meng YK, et al. Study on the mechanism of PPAR-γ dependent immunological idiosyncrasy liver injury induced by Polygonum multiflorum[J]. Acta Pharmaceutica Sinica, 2017, 52(7): 1027-1032.] DOI: 10.16438/j.0513-4870.2016-0774.
19.桂蜀华, 王贵均, 熊艺花, 等. 狭基线纹香茶菜对免疫性肝损伤小鼠TNF-α mRNA和蛋白表达水平的影响[J]. 中药药理与临床, 2011, 27(4): 43-46. [Gui SH, Wang GJ, Xiong YH, et al. Study on TNF-α mRNA and protein expression in mice with immune injury treated by water-soluble extract from Isodon lophanthoides var.gerardianus (Benth) Har[J]. Pharmacology and Clinics of Chinese Materia Medica, 2011, 27(4): 43-46.] DOI: 10.13412/j.cnki.zyyl.2011.04.026.
20.桂蜀华, 常金荣, 梁远园, 等. 狭基线纹香茶菜水提部位对免疫肝损伤小鼠NF-κB蛋白表达水平及核转位的影响[J]. 中国药房, 2011, 22(11): 980-982. [Gui SH, Chang JR, Liang YY, et al. The effect of water extract from Rabdosia striata on NF in mice with immune liver injury-κ effect of B protein expression level and nuclear translocation[J]. China Pharmacy, 2011, 22(11): 980-982.] http://www.cnki.com.cn/Article/CJFDTotal-ZGYA201111011.htm.
21.钱卫斌, 钱秋海. 糖肝康对TAA致糖尿病模型大鼠肝损伤肝脏TLR4表达的影响[J]. 中国药理学通报, 2016, 32(2): 295-296. [Qian WB, Qian QH. Effect of Tanggankang on immunohistochemical expression of TLR4 in acute damaged liver rat model[J]. Chinese Pharmacological Bulletin, 2016, 32(2): 295-296.] DOI: 10.3969/j.issn.1001-1978.2016.02.030.
22.张玉蓉, 汪静, 朱晓宁, 等. 祛痰活血方调控LPS介导TLR4/Myd88/NF-κB信号通路抗NASH大鼠肝损伤的机制研究[J]. 四川中医, 2021, 39(8): 34-38. [Zhang YR, Wang J, Zhu XN, et al. Mechanism of Qutan Huoxue Formula on LPS-mediated TLR4/Myd88/NF-κB signaling pathway against jury for NASH rats[J]. Journal of Sichuan of Traditional Chinese Medicine, 2021, 39(8): 34-38.] DOI: 1000-3649(2021)08-0034-05.
23.唐双意, 王希斌, 丘岳西, 等. 罗莫司对肝脏热缺血-再灌注损伤小鼠肝组织TLR4表达和细胞自噬功能的影响[J]. 实用肝脏病杂志, 2021, 24(5): 669-672. [Tang SY, Wang XB, Qiu YX, et al. Effects of sirolimus on hepatic TLR4 expression and autophagy in mice with partial hepatic warm ischemia-reperfusion injury[J]. Journal of Practical Hepatology, 2021, 24(5): 669-672.] DOI: 10.3969/j.issn.1672-5069.2021.05.016.
24.Ma X, Peng JH, Hu YY. Chinese herbal medicine-induced liver injury[J]. J Clin Transl Hepatol, 2014, 2(3): 170. DOI: 10.14218/JCTH.2014.00009.
25.侯健, 孙娥, 宋捷, 等. 肝脏药物代谢酶CYP450与中药肝毒性的关系[J]. 中国中药杂志, 2016, 41(15): 2774-2780. [Hou J, Sun E, Song J, et al. Relationship between hepatic drug-metabolizing enzymes CYP450 and traditional Chinese medicine-induced hepatotoxicity[J]. China Journal of Chinese Materia Medica, 2016, 41(15): 2774-2780.] DOI: 10.4268/cjcmm20161505.
26.Abd-Elhakim YM, Moustafa GG, El-Sharkawy NI, et al. The ameliorative effect of curcumin on hepatic CYP1A1 and CYP1A2 genes dysregulation and hepatorenal damage induced by fenitrothion oral intoxication in male rats[J]. Pestic Biochem Physiol, 2021, 179:104959. DOI: 10.1016/j.pestbp.2021.104959.
27.Braeuning A, Schwarz M. Regulation of expression of drug-metabolizing enzymes by oncogenic signaling pathways in liver tumors: a review [J]. Acta Pharm Sin B, 2020, 10(1): 113-122. DOI: 10.1016/j.apsb.2019.06.013.
28.时乐, 徐立. 黄药子总皂苷致肝损伤与CYP450的相关性研究[A]//全国有毒中药的研究及其合理应用交流研讨会[C]. 北京:中华中医药学会, 2012.
29.Lu Y, Xie T, Zhang Y, et al. Triptolide induces hepatotoxicity via inhibition of CYP450s in rat liver microsomes[J]. BMC Complement Altern Med, 2017, 17(1): 15. DOI: 10.1186/s12906-016-1504-3.
30.程敏, 汤俊. 菊三七中吡咯里西啶类化学成分及其药理毒理作用的研究进展[J]. 中国药师, 2018, 21(12): 2206-2210. [Chen M, Tang J. Research progress in pyrrolizidine alkaloids and their pharmacological and toxicological effects from Gy-nurae Japonicae Rhizoma seu herba[J]. China Pharmacist, 2018, 21(12): 2206-2210.] DOI: 10.3969/j.issn.1008-049X.2018.12.031.
31.杨新华, 夏宏光, 金涌. 雷公藤甲素通过抑制细胞色素P450 3A4酶增强肝损伤研究[J]. 安徽医科大学学报, 2020, 55(4): 496-502. [Yang XH, Xia HG, Jin Y. Triptolide enhances liver injury by inhibiting its metabolic enzyme cytochrome P450 3A4[J]. Acta Universitatis Medicinalis Anhui, 2020, 55(4): 496-502.] DOI: 10.19405/j.cnki.issn1000-1492.2020.04.003.
32.华碧春, 刘娇, 黄智锋, 等. 黄药子配伍甘草对大鼠肝脏CYP1A2、CYP2E1蛋白表达影响的实验研究[J]. 中药与临床, 2014, 5(5): 29-31. [Hua BC, Liu J, Huang ZF, et al. Experimental study on CYP1A2 and CYP2E1 protein expression in liver of rats by combined administration of Huangyaozi and Gancao[J]. Pharmacy and Clinics of Chinese Materia Medica, 2014, 5(5): 29-31.] DOI: CNKI:SUN:LCZY.0.2014-05-011.
33.刘娇. 黄药子配伍甘草对氧化应激及大鼠肝脏CYP1A2、CYP2E1蛋白表达影响的研究[D]. 福州:福建中医药大学, 2014.
34.陈鑫, 葛芹, 张彩云, 等. 异甘草酸镁对CCl4致急性肝损伤大鼠肝组织CYP1A2、CYP2E1蛋白及其mRNA表达的影响[J]. 安徽中医药大学学报, 2017, 36(1): 55-58. [Chen X, Ge Q, Zhang CY, et al. Influence of magnesium isoglycyrrhizinate on protein and mRNA expression of CYP1A2 and CYP2E1 in liver tissues in rats with acute liver injury induced by carbon tetrachloride[J]. Journal of Anhui University of Chinese Medicine, 2017, 36(1): 55-58.] DOI: 10.3969/j.issn.2095-7246.2017.01.017.
35.王君明, 崔瑛, 申玲玲, 等. 中药致药源性肝损伤的氧化应激机制研究进展[J]. 中国实验方剂学杂志, 2011, 17(5): 247-249. [Wang JM, Cui Y, Shen LL, et al. Research progress in mechanism based on oxidative stress of liver injury induced by Chinese medicine[J]. China Journal of Experimental Traditional Medical Formulae, 2011, 17(5): 247-249.] DOI: 10.3969/j.issn.1005-9903.2011.05.077.
36.Li XY, Li X, Lu JX, et al. Saikosaponins induced hepatotoxicity in mice via lipid metabolism dysregulation and oxidative stress: a proteomic study[J]. BMC Complement Altern Med, 2017, 17(1): 219. DOI: 10.1186/s12906-017-1733-0.
37.Lee AY, Jang Y, Hong SH, et al. Ephedrine-induced mitophagy via oxidative stress in human hepatic stellate cells[J]. J Toxicol Sci, 2017, 42(4): 461-473. DOI: 10.2131/jts.42.461.
38.李逸群, 刘春芳, 贾可欣, 等. 6个不同厂家雷公藤多苷片大剂量致正常大鼠慢性多脏器损伤的比较研究[J]. 中国中药杂志, 2020, 45(4): 746-754. [Li YQ, Liu CF, Jia KX, et al. Comparative study on chronic multiple organ injury in normal rats caused by high dose of Tripterygium Glycosides Tablets from 6 different manufacturers[J]. China Journal of Chinese Materia Medica, 2020, 45(4): 746-754.] DOI: 10.19540/j.cnki.cjcmm.20191017.401.
39.牛成伟, 陆宾, 季莉莉, 等. 黄独素B诱导小鼠急性肝损伤及其机制[J]. 中国中药杂志, 2014, 39(7): 1290-1292. [Niu CW, Lu B, Ji LL, et al. Acute liver injury induced by Huangdu B in mice and its mechanism[J]. China Journal of Chinese Materia Medica, 2014, 39(7): 1290-1292.] DOI: CNKI:SUN:ZGZY.0.2014-07-030.
40.You L, Yang C, Du Y, et al. Matrine exerts hepatotoxic effects via the ROS-dependent mitochondrial apoptosis pathway and inhibition of Nrf2-mediated antioxidant response[J]. Oxid Med Cell Longev, 2019, 2019: 1045345. DOI: 10.1155/2019/1045345.
41.何茂群, 曹智华, 苗得足. Nrf2信号通路及其在肝组织中的作用[J]. 药学进展, 2014, 38(4): 257-263. [He MQ, Cao ZH, Miao DZ. Nrf2 signaling pathway and its function in hepatic tissue[J]. Progress in Pharmaceutical Sciences, 2014, 38(4): 257-263.] DOI: CNKI:SUN:YXJZ.0.2014-04-004.
42.Wei X, Wang H, Sun X, et al. 4-hydroxy-2(3H)-benzoxazolone alleviates acetaminophen induced hepatic injury by inhibiting NF-κB and activating Nrf2/HO-1 signaling pathways[J]. Am J Transl Res, 2020, 12(5): 2169-2180. https://pubmed.ncbi.nlm.nih.gov/32509209/.
43.张雨淼, 胡珊, 陈龙, 等. 4-PBA通过Nrf2/NQO1通路减轻急性汞中毒小鼠肝氧化应激和功能损伤[J]. 中国组织化学与细胞化学杂志, 2021, 30(4): 330-334. [Zhang YM, Hu S, Chen L, et al. 4-PBA reduces acute mercury poisoning mice liver injury by oxidative stress through Nrf2/NQO1 pathway[J]. Chinese Journal of Histochemistry and Cytochemistry, 2021, 30(4): 330-334.] DOI: 10.16705/j.cnki.1004-1850.2021.04.004.
44.胡勇, 姚茂琳, 于春, 等. 银杏叶片调控Nrf2-Keap1-ARE信号通路改善燃煤污染型地方性砷中毒大鼠肝损伤的作用[J]. 中华地方病学杂志, 2021, 40(6): 441-447. [Hu Y, Yao ML, Yu C, et al. Ginkgo biloba regulate Nrf2-Keap1-ARE signaling pathway to ameliorate liver injury in endemic arsenic poisoning rats induced by coal burning[J]. Chinese Jouranl of Endemiology, 2021, 40(6): 441-447.] DOI: 10.3760/cma.j.cn231583-20201022-00273.
45.屈丹丹, 彭福江, 刘莉, 等. 臭氧化盐水对肝细胞Keap1-Nrf2-ARE通路的激活作用[J]. 中华肝脏病杂志, 2011, 19(5): 367-371. [Qu DD, Peng FJ, Liu L, et al. Effect of ozonized saline on signaling passway of Keap1-Nrf2-ARE in rat hepatocytes[J]. Chinese Journal of Hepatology, 2011, 19(5): 367-371.] DOI: 10.3760/cma.j.issn.1007-3418.2011.05.013.
46.杨亚维, 袁杰. PPARα抗氧化应激作用的研究进展[J]. 东南大学学报, 2016, 35(1): 147-150. [Yang YW, Yuan J. PPARα research progress of antioxidant stress[J]. Journal of Southeast University, 2016, 35(1): 147-150.] DOI: 10.3969/j.issn.1671-6264.2016.01.034.
47.张安民, 徐燕, 谷伯起, 等. 小鼠谷胱甘肽过氧化物酶分布的免疫组化研究[J]. 中国组织化学与细胞化学杂志, 1993, (2): 152-155. [Zhang AM, Xu Y, Gu BQ, et al. Immunohistochemical localization of glutathione peroxidase in mice tessues[J]. Chinese Journal of Histochemistry and Cytochemistry, 1993, (2): 152-155.] DOI: CNKI:SUN:GGZZ.0.1993-02-013.
48.胡勇, 王蕾, 王胜利, 等. Nrf2-Keap1-ARE信号通路在燃煤型砷中毒大鼠肝损伤中的作用[J]. 环境与健康杂志, 2020, 37(2): 100-105. [Hu Y, Wang L, Wang SL, et al. Role of Nrf2-Keap1-ARE signaling pathway in liver injury in rats with coal-burning-induced arsenism[J]. Journal of Environment and Health, 2020, 37(2): 100-105.] DOI: 10.16241/j.cnki.1001-5914.2020.02.002.
49.张韫, 赵宗江, 李平, 等. 黄连素对2型糖尿病大鼠肝脏Nrf2介导的氧化应激反应的影响[J]. 中华中医药杂志, 2020, 35(1): 150-154. [Zhang Y, Zhao ZJ, Li P, et al. Effects of berberine on Nrf2 mediated oxidative stress in liver of type 2 diabetic rats[J]. China Journal of Traditional Chinese Medicine and Pharmacy, 2020, 35(1): 150-154.] DOI: CNKI:SUN:BXYY.0.2020-01-036.
50.刘芳, 王玉珍, 赵世敏, 等. 沙棘多糖对急性肝损伤小鼠氧化应激的抑制作用及其对BCL-2/Bax和PPAR-γ的调控[J]. 中国免疫学杂志, 2016, 32(3): 358-361. [Liu F, Wang YZ, Zhao SM, et al. Inhibitory effects of seabuckthorn polysaccharide on oxidative stress in mice with actue liver injury and modulatory effect on BCL-2/Bax and PPAR-γexpression[J]. Chinese Journal of Immunology, 2016, 32(3): 358-361.] DOI: 10.3969/j.issn.1000-484X.2016.03.014.
51.宋琬晨, 郭婉霜, 郑伟娟. 大黄素型蒽醌类化合物肝肾毒性的分子机制研究[J]. 药物生物技术, 2020, 27(2): 149-153. [Song WC, Guo WS, Zheng WJ. Study on the molecular mechanism of hepatorenal toxicity of emodin-type anthraquinone compounds[J]. Chinese Journal of Pharmaceutical Biotechnology, 2020, 27(2): 149-153.] DOI: 10.19526/j.cnki.1005-8915.20200212.
52.张辉艳, 张绪清. 糖皮质激素阻止肝衰竭发生与发展的机制[J]. 胃肠病学和肝病学杂志, 2016, 25(5): 481-484. [Zhang HY, Zhang XQ. Mechanisms of glucocorticoids in preventing the development and progress of liver failure[J]. Chinese Journal of Gastroenterology and Hepatology, 2016, 25 (5): 481-484.] DOI: 10.3969/j.issn.1006-5709.2016.05.001.
53.Liu Y, Dong X, Wang W, et al. Molecular mechanisms of apoptosis in HepaRG cell line induced by polyphyllin VI via the fas death pathway and mitochondrial-dependent pathway[J]. Toxins, 2018, 10(5): 201. DOI: 10.3390/toxins10050201.
54.王海颖, 张晋军, 张艳敏, 等. 芍药红花煎剂对肝损伤细胞氧自由基及凋亡因子影响研究[J]. 中华中医药学刊, 2016, 34(6): 1348-1350. [Wang HY, Zhang JJ, Zhang YM, et al. Shaoyao honghua decoction on oxygen free radical and apoptosis factors of liver injury[J]. Chinese Archives of Traditional Chinese Medicine, 2016, 34(6): 1348-1350.] DOI: 10.13193/j.issn.1673- 7717.2016.06.018.
55.廖纬琳, 陈国忠, 苏洪佳, 等. 七方胃痛颗粒对胃癌细胞中Fas /FasL通路的影响[J]. 时珍国医国药, 2018, 29(8): 1804-1807. [Liao WL, Chen GZ, Su HJ, et al. Effect of Qifang Weitong granule on Fas/Fasl pathway in gastric cancer cells[J]. Lishizhen Medicine and Materia Medica Research, 2018, 29(8): 1804-1807.] DOI: CNKI:SUN:SZGY.0.2018-08-004.
56.郭存丽, 毕玉美, 刘钊, 等. 肝细胞肝癌患者外周血CD8+T淋巴细胞凋亡相关机制探讨[J]. 现代肿瘤医学, 2018, 26(14) : 2151-2155. [Guo CL, Bi YM, Liu Z, et al. The related mechanism of CD8+T lymphocyte apoptosis in patients with hepatocellular carcinoma[J]. Journal of Modern Oncology, 2018, 26(14) : 2151-2155.] DOI: 10.3969/j.issn.1672-4992.2018.14.003.
57.霍亮, 骆杨, 许家亮. 肝细胞癌中Ki-67和FasL的表达关系及临床意义[J]. 肝脏, 2018, 23(12): 1119-1123. [Huo L, Luo Y, Xu JL. Expression of Ki-67 and FasL in hepatocellular carcinoma and its clinical significance[J]. Chinese Hepatology, 2018, 23(12): 1119-1123.] DOI: CNKI:SUN:ZUAN.0.2018-12-023.
58.刘俊红, 朱平生, 朱正望, 等. 扶正祛邪方抗ConA模型小鼠肝损伤的作用机制[J]. 中国实验方剂学杂志, 2019, 25(20): 70-75. [Liu JH, Zhu PS, Zhu ZW, et al. Mechanism of fuzheng quxie prescription against liver injury of cona model mice[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2019, 25(20): 70-75. ] DOI: 10.13422/j.cnki.syfjx.20192040.
59.王洁, 张佳信, 叶新苗, 等. 基于Fas/FasL信号通路探讨太旨颗粒对非酒精性脂肪肝大鼠的保护作用及机制研究[J]. 中华中医药杂志, 2020, 35(8): 4214-4217 [Wang J, Zhang JX, Ye XM, et al. Study on protective effect and mechanism of Taizhi Granules on nonalcoholic fatty liver rats based on Fas/FasL signaling pathway[J]. China Journal of Traditional Chinese Medicine and Pharmacy, 2020, 35(8): 4214-4217.] http://qikan.cqvip.com/Qikan/Article/Detail?id=7103034352.
60.栾玉泉, 徐立, 王成军. 葛根提取物对酒精性肝损伤大鼠肝组织TNF-α表达变化的研究[J]. 大理学院学报, 2009, 8(2): 1-4. [Luan YQ, Xu L, Wang CJ. On the expressive changes of the rat's alcoholic liver injury 's TNF-α caused by the extractive from the root of Kudzu vine[J]. Journal of Dali University, 2009, 8(2): 1-4.] DOI: 10.3969/j.issn.1672-2345.2009.02.001.
61.Ron D, Walter P. Signal integration in the endoplasmic reticulum unfolded protein response[J]. Nat Rev Mol Cell Biol, 2007, 8(7): 519-529. DOI: 10.1038/nrm2199.
62.Ozcan L, Tabas I. Role of endoplasmic reticulum stress in metabolic disease and other disorders[J]. Annu Rev Med, 2012, 63: 317-328. DOI: 10.1146/annurev-med-043010-144749.
63.Shen Z, Chen J, Lu H. Osthole induced apoptosis in human normal liver cells by regulating cell proliferation and endoplasmic reticulum stress[J]. Environ Toxicol, 2019, 34(6): 768-776. DOI: 10.1002/tox.22743.
64.彭馨仪, 罗新华. 内质网应激蛋白CHOP、Caspase-12在药物性肝损伤大鼠肝组织中的表达变化及作用研究[J]. 贵州医药, 2019, 43(2): 174-177. [Peng XY, Luo XH. Study on the expression and role of endoplasmic reticulum stress proteins CHOP and Caspase-12 in liver tissue of rats with drug-induced liver injury[J]. Guizhou Medical Journal, 2019, 43(2): 174-177.] DOI: 10.3969/j.issn.1000-744X.2019.02.002.
65.Lu H, Zhang L, Gu LL, et al. Oxymatrine induces liver injury through JNK signalling pathway mediated by TNF α in vivo[J]. Basic Clin Pharmacol Toxicol, 2016 119(4):405-411. DOI: 10.1111/bcpt.12608.
66.赵亚飞, 高杨, 吴欣芳, 等. 蚯蚓活性组分对四氯化碳诱导小鼠内质网应激所致急性肝损伤的保护作用[J]. 中国中药杂志, 2017, 42(6): 1183-1188. [Zhao YF, Gao Y, Wu XF, et al. Protective effect of earthworm active ingredientsagainst endoplasmic reticulum stress-induced acute liver injury in mice[J]. China Journal of Chinese Materia Medica, 2017, 42(6): 1183-1188.] DOI: 10.19540/j.cnki.cjcmm.20170121.028.
67.吕行直, 李瑞芳, 高子涵, 等. 柴胡皂苷-b2抑制内质网应激信号通路减轻四氯化碳致小鼠急性肝损伤[J]. 中国药理学与毒理学杂志, 2019, 33(2): 109-115. [Lyu XZ, Li RF, Gao ZH, et al. Saikosaponin-b2 alleviates CCl4-induced acute liver injury in mice by inhibiting endoplasmic reticulum stress signal pathway[J]. Chinese Journal of Pharmacology and Toxicology, 2019, 33(2): 109-115.] DOI: 10.3867/j.issn.1000-3002.2019.02.004.
68.胡珊, 张雨淼, 王保强, 等. 内质网应激介导小鼠急性汞中毒性肝损伤[J]. 中国组织化学与细胞化学杂志, 2021, 30(2): 115-120. [Hu S, Zhang YM, Wang BQ, et al. Endoplasmic reticulum stress mediates acute mercury poisoning induced liver injury in mice[J]. Chinese Journal of Histochemistry and Cytochemistry, 2021, 30(2): 115-120.] DOI: 10.16705/j.cnki.1004-1850.2021.02.001.
69.魏海梁, 司明明, 郭辉, 等. 线粒体与肝细胞损伤的关系[J]. 临床肝胆病杂志, 2020, 36(3): 687-689. [Wei HL, Si MM, Guo H, et al. Association between mitochondria and hepatocellular injury[J]. Journal of Clinical Hepatol, 2020, 36(3): 687-689.] DOI: 10.3969/j.issn.1001-5256.2020.03.048.
70.周兴, 李雪梅, 李晓辉. 以线粒体为靶点治疗肝损伤的研究进展[J]. 重庆理工大学学报, 2021, 35(9): 184-193. [Zhou X, Li XM, Li XH. Research progress in the treatment of liver injury by targeting mitochondria[J]. Journal of Chongqing University of Technology, 2021, 35(9): 184-193.] DOI: 10.3969/j.issn.1674-8425(z).2021.09.023.
71.郭家彬, 彭辉, 王以美, 等. 线粒体毒性评价及其在创新药物安全性评价中的意义[J]. 中国新药杂志, 2012, 21(16): 1867-1871. [Guo JB, Peng H, Wang YM, et al. Significance of mitochondrial toxicity testing in the safety evaluation of innovative drugs[J]. Chinese Journal of New Drugs, 2012, 21(16): 1867-1871. ] https://d.wanfangdata.com.cn/periodical/zgxyzz201216008.
72.Pan YX, Luo Z, Zhuo MQ, et al. Oxidative stress and mitochondrial dysfunction mediated Cd-induced hepatic lipid accumulation in zebrafish Danio rerio[J]. Aquat Toxicol, 2018, 199: 12-20. DOI: 10.1016/j.aquatox.2018.03.017.
73.陈廷玉, 陈大印, 谢金鹿, 等. Nrf2/ARE信号通路在槲皮素抑制异烟肼诱导的肝细胞线粒体氧化损伤中的作用[J]. 癌变.畸变.突变, 2021, 33(3): 208-212,217. [Chen TY, Chen DY, Xie JL, et al. Role of the Nrf2/ARE signaling pathway on quercetin-inhibition of INH-induced mitochondrial oxidative damage in hepatocytes[J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2021, 33(3): 208-212, 217.] DOI: 10.3969/j.issn.1004-616x. 2021.03.009.
74.Chen CH, Chen MF, Huang SJ, et al. Saikosaponin a induces apoptosis through mitochondria-dependent pathway in hepatic stellate cells[J]. Am J Chin Med, 2017, 45(2): 351-368. DOI: 10.1142/S0192415X17500227.
75.连闻雨, 杨春启, 林毅, 等. 黄连碱通过线粒体损伤及内质网应激PERK-ATF4-CHOP通路导致L02细胞毒性[J]. 军事医学, 2021, 45(11): 834-842. [Lian WY, Yang CQ, Lin Y, et al. Cytotoxicity of coptisine via endoplasmic reticulum stress PERK -ATF4-CHOP pathway and mitochondrial damage pathway in L02 cells[J]. Military Medical Sciences, 2021, 45(11): 834-842.] DOI: 10.7644/j.issn.1674-9960.2021.11.008.
76.王加志, 刘树民, 赵艳, 等. 黄药子中二萜内酯类成分对大鼠肝细胞损伤作用的实验研究[J]. 药物不良反应杂志, 2009, 11(1): 13-16. [Wang JZ, Liu SM, Zhao Y, et al. Experimental studies on liver cell injury induced by diterpene lactones extracted from Dioscorea bulbifera[J]. Adverse Drug Reactions Journal, 2009, 11(1): 13-16.] DOI: 10.3969/j.issn.1008-5734.2009.01.004.
77.Yang X, Wang H, Ni HM, et al. Inhibition of Drp1 protects against senecionine induced mitochondriamediated apoptosis in primary hepatocytes and in mice[J]. Redox Biol, 2017, 12: 264-273. DOI: 10.1016/j.redox.2017. 02.020.
78.赵莉萍, 梅俏, 胡咏梅, 等. 一氧化氮在双氯芬酸钠致大鼠急性肝损伤中的作用[J]. 中国药理学与毒理学杂志, 2013, 27(5): 836-841. [Zhao LP, Mei Q, Hu YM, et al. Role of nitric oxide in rats with acute liver injury induced by diclofenac[J]. Chinese Journal of Pharmacology and Toxicology, 2013, 27(5): 836-841. ] DOI: 10.3867/j.issn.1000-3002.2013.05.012.
79.靖国庆, 吴云, 孟庆涛, 等. 羟考酮预处理对大鼠肠缺血再灌注时线粒体途径肝细胞凋亡的影响[J]. 中华麻醉学杂志, 2018, 38(6): 672-675. [Jing GQ, Wu Y, Meng QT, et al. Effect of oxycodone preconditioning on mitochondrion-dependent apoptosis in liver cells during intestinal ischemia-reperfusion in rats[J]. Chinese Journal of Anesthesiology, 2018, 38(6): 672-675.] DOI: 10.3760/cma.j.issn.0254-1416.2018.06.009.
80.宣文婷, 卢昕奕, 李俊. 丙泊酚通过影响SIRT2调控线粒体自噬对酒精性肝损伤的保护作用[J]. 中国药理学通报, 2021, 37(11): 1512-1518. [Xuan XT, Lu XY, Li J. Propofol protects against alcohol-induced liver injury to up-regulate mitophagy via SIRT2[J]. Chinese Pharmacological Bulletin, 2021, 37(11): 1512-1518. ] DOI: 10.3969/j.issn.1001-1978.2021.11.007.
81.康敏, 李森, 钟德君, 等. 非酒精性脂肪肝大鼠肝细胞凋亡与线粒体膜通透性转换孔开放的关系[J]. 南方医科大学学报, 2013, 33(7): 1062-1066. [Kang M, Li S, Zhong DJ, et al. Hepatocyte apoptosis and mitochondrial permeability transition pore opening in rats with nonalcoholic fatty liver[J]. Journal of Southern Medical University, 2013, 33(7): 1062-1066. ] DOI: 10.3969/j.issn.1673-4254.2013.07.26.