Perioperative drug-related rare adverse reactions are often characterized by acute onset, high risk, and unpredictable, involving complex physiological and genetic factors. Currently, most perioperative pharmacovigilance relies on clinical monitoring and real-time data reporting by medical teams. However, due to scattered data and the masking of symptoms by anesthetics and pain medications, it is difficult to predict rare adverse reactions accurately and promptly. This paper systematically reviews the latest advancements in the integration of digital and intelligent technologies across various fields. Based on real-world data, our research team had leveraged digital-intelligence fusion technologies to deeply integrate big data with artificial intelligence, thereby constructing a standardized anesthesia-specific database. This enabled dynamic monitoring of vital signs, individualized risk prediction, and comprehensive analysis of multimodal data in real-world studies, providing an innovative solution for perioperative pharmacovigilance. The aim of this paper is to enhance the personalization and intelligence of perioperative drug safety management, thereby offering more effective protection for patient medication safety during the perioperative period.
1.CIOMS. Current challenges in pharmacovigilance: pragmatic approaches. Report of CIOMS Working Group V[R]. Geneva: World Health Organization (WHO), 2001.
2.Oprea AD, Keshock MC, O'Glasser AY, et al. Preoperative management of medications for psychiatric diseases: society for perioperative assessment and quality improvement consensus statement[J]. Mayo Clin Proc, 2022, 97(2): 397-416. DOI: 10.1016/j.mayocp.2021.11.011.
3.Silva A, Costa B, Castro I, et al. New perspective for drug-drug interaction in perioperative period[J]. J Clin Med, 2023, 12(14): 4810. DOI: 10.3390/jcm12144810.
4.Jhun EH, Apfelbaum JL, Dickerson DM, et al. Pharmacogenomic considerations for medications in the perioperative setting[J]. Pharmacogenomics, 2019, 20(11): 813-827. DOI: 10.2217/pgs-2019-0040.
5.van den Bersselaar LR, Hellblom A, Gashi M, et al. Referral indications for malignant hyperthermia susceptibility diagnostics in patients without adverse anesthetic events in the era of next-generation sequencing[J]. Anesthesiology, 2022, 136(6): 940-953. DOI: 10.1097/ALN.0000000000004199.
6.Ibarra Moreno CA, Silva HCA, Voermans NC, et al. Myopathic manifestations across the adult lifespan of patients with malignant hyperthermia susceptibility: a narrative review[J]. Br J Anaesth, 2024, 133(4): 759-767. DOI: 10.1016/j.bja.2024.05.046.
7.刘佩玉, 李雪云, 牟童, 等. 全身麻醉手术患者恶性高热管理的最佳证据总结[J]. 护理学报, 2024, 31(18): 45-49. DOI: 10.16460/j.issn1008-9969.2024.18.045.
8.Liu S, Kim DI, Oh TG, et al. Neural basis of opioid-induced respiratory depression and its rescue[J]. Proc Natl Acad Sci USA, 2021, 118(23): e2022134118. DOI: 10.1073/pnas.2022134118.
9.Manian DV, Volcheck GW. Perioperative anaphylaxis: evaluation and management[J]. Clin Rev Allergy Immunol, 2022, 62(3): 383-399. DOI: 10.1007/s12016-021-08874-1.
10.徐军美, 戴茹萍, 张燕玲, 等. 围术期严重过敏反应处理流程院内规范[J]. 中南药学, 2024, 22(4): 831-833. DOI: 10.7539/j.issn.1672-2981.2024.04.002.
11.Kanjia MK, Kurth CD, Hyman D, et al. Perspectives on anesthesia and perioperative patient safety: past, present, and future[J]. Anesthesiology, 2024, 141(5): 835-848. DOI: 10.1097/ALN.0000000000005164.
12.邓雪. 围术期药品不良反应的危险因素及风险预测模型的搭建[D]. 沈阳: 中国医科大学, 2023. DOI: 10.27652/d.cnki.gzyku.2023.000297.
13.van den Bersselaar LR, Greven T, Bulger T, et al. RYR1 variant c.38T>G, p.Leu13Arg causes hypersensitivity of the ryanodine receptor-1 and is pathogenic for malignant hyperthermia[J]. Br J Anaesth, 2021, 127(2): e63-e65. DOI: 10.1016/j.bja.2021.05.008.
14.Yin Y, Shu Y, Zhu J, et al. A real-world pharmacovigilance study of FDA Adverse Event Reporting System (FAERS) events for osimertinib[J]. Sci Rep, 2022, 12(1): 19555. DOI: 10.1038/s41598-022-23834-1.
15.Mallama CA, Greene C, Alexandridis AA, et al. Patient-reported opioid analgesic use after discharge from surgical procedures: a systematic review[J]. Pain Med, 2022, 23(1): 29-44. DOI: 10.1093/pm/pnab244.
16.董娜, 王晔, 吴晓燕, 等. 某院外科手术患者围手术期用药评价及风险因素分析[J]. 药物流行病学杂志, 2021, 30(9): 590-595. [Dong N, Wang Y, Wu XY, et al. Evaluation of safety and risk factors analysis of elderly surgical patients in a hospita[J]. Chinese Journal of Pharmacoepidemiology, 2021, 30(9): 590-595.] DOI: 10.19960/j.cnki.issn1005-0698.2021.09.004.
17.王莹, 郭晓光, 张卫. 544例围术期不良事件的总结与分析[J]. 麻醉安全与质控, 2018, 2(5): 252-255. [Wang Y, Guo XG, Zhang W. Analysis and summary of 544 cases of perioperative adverse events[J]. Perioperative Safety and Quality Assurance, 2018, 2(5): 252-255.] DOI: 10.3969/j.issn.2096-2681.2018.05.002.
18.Trifirò G, Crisafulli S. A new era of pharmacovigilance: future challenges and opportunities[J]. Front Drug Saf Regul, 2022, 2: 6898. DOI: 10.3389/fdsfr.2022.866898.
19.Li Y, Wu Y, Jiang T, et al. Opportunities and challenges of pharmacovigilance in special populations: a narrative review of the literature[J]. Ther Adv Drug Saf, 2023, 14: 20420986231200746. DOI: 10.1177/20420986231200746.
20.Lavertu A, Vora B, Giacomini KM, et al. A new era in pharmacovigilance: toward real-world data and digital monitoring[J]. Clin Pharmacol Ther, 2021, 109(5): 1197-1202. DOI: 10.1002/cpt.2172.
21.Silva L, Pacheco T, Araújo E, et al. Unveiling the future: precision pharmacovigilance in the era of personalized medicine[J]. Int J Clin Pharm, 2024, 46(3): 755-760. DOI: 10.1007/s11096-024-01709-x.
22.卢小宾, 霍帆帆, 王壮, 等. 数智时代的信息分析方法: 数据驱动、知识驱动及融合驱动[J]. 中国图书馆学报, 2024, 50(1): 29-44. [Lu XB, Huo FF, Wang Z, et al. The methods of information analysis in data intelligence era: data driven knowledge driven, and fusion driven by data and knowledge[J]. Journal of Library Science in China, 2024, 50(1): 29-44.] DOI: 10.13530/j.cnki.jlis.2024003.
23.Ellahham S. Artificial intelligence: the future for diabetes care[J]. Am J Med, 2020, 133(8): 895-900. DOI: 10.1016/j.amjmed.2020.03.033.
24.赵鲁岩. 科技赋能视角下社区警务智能辅助决策系统的建构思路[J]. 公安研究, 2024, (10): 37-43. https://www.cnki.com.cn/Article/CJFDTotal-GAYJ202410005.htm.
25.谢梓良, 涂良辉, 沈佳琦, 等. 一种基于深度学习的应急救援物资航空运输决策系统[J/OL]. 航空工程进展, 1-11 [2024-12-17]. http://kns.cnki.net/kcms/detail/61.1479.V.20240903.0930.002.html.
26.蔡志强, 王益敏, 杜朝阳, 等. 基于患者临床特征相似度的术后镇痛辅助决策系统的设计与实现[J]. 中国数字医学, 2024, 19(6): 62-67. [Cai ZQ, Wang YM, Du ZY, et al. Design and implementation of an assistant decision-making system forpostoperative analgesia based on the similarity of patients' clinical features[J]. China Digital Medicine, 2024, 19(6): 62-67.] DOI: 10.3969/j.issn.1673-7571.2024.06.012.
27.何小倩, 帅文君, 刘美玲, 等. 基于云随访平台的居家症状远程监测与智能决策支持系统在妇科恶性肿瘤化疗病人中的应用[J]. 循证护理, 2024, 10(17): 3135-3139. [He XQ, Shuai WJ, Liu ML, et al. Application of home symptom remote monitoring and intelligent decision support system based on cloud follow-up platform in patients receiving chemotherapy for gynecological malignant tumors[J]. Chinese Evidence-Based Nursing, 2024, 10(17): 3135-3139.] DOI: 10.12102/j.issn.2095-8668.2024.17.017.
28.陈泞夙, 赵凯, 薛心雨, 等. 基于人工智能的临床辅助决策系统早期临床评价研究的报告规范(DECIDE-AI)解读[J]. 中国循证医学杂志, 2024, 24(9): 1100-1107. [Chen NS, Zhao K, Xue XY, et al. Interpretation of the DEClDE-AI guideline: a reporting guideline for the early-stage clinical evaluation of decision support systems driven by artificial intelligence[J]. Chinese Journal of Evidence-Based Medicine, 2024, 24(9): 1100-1107.] DOI: 10.7507/1672-2531.202401188.
29.林梓, 顾海. 数智赋能视域下医共体医防融合的创新机制与实现路径[J]. 南京社会科学, 2024, (6): 47-54. [Lin Z, Gu H. Under the vision of digital intelligence empowerment: exploring innovative mechanisms and implementation pathways for medical consortia and medical prevention integration[J]. Nanjing Journal of Social Sciences, 2024, (6): 47-54.] DOI: 10.15937/j.cnki.issn1001-8263.2024.06.006.
30.韩庆龙, 姚向明, 刘楠. 城市轨道交通线网客流管控系统设计及实现[J]. 铁路计算机应用, 2024, 33(5): 80-83. [Han QL, Yao XM, Liu N. Passenger flow management control system for urban rail transit network[J]. Urban Rail Transit, 2024, 33(5): 80-83.] DOI: 10.3969/j.issn.1005-8451.2024.05.15.
31.杨颖, 熊峰, 刘健, 等. 数字生态在一线环境监测的创新应用[J]. 环境经济, 2024, (6): 52-55. https://kns.cnki.net/kcms2/article/abstract?v=CdHX_LbaUYxk0tAA9-G_7tlUJDm-2yfA8mEw22LAGW-rsEcfp_mtZJgxVl_PVpHPTxsmFl2Gku3tOEYbTKYi33AyboUgZbozlG_njyhwlYEid9hka3o2XXKSs8Ug6X9bUCGgRZXGapAQLsaO2jKjA2vYGDFlajN94SWkOko7p5ouGDxhvEL0HV7PH53pwsV0&uniplatform=NZKPT&language=CHS.
32.Nehmeh B, Rebehmed J, Nehmeh R, et al. Unlocking therapeutic frontiers: harnessing artificial intelligence in drug discovery for neurodegenerative diseases[J]. Drug Discov Today, 2024, 29(12):104216. DOI: 10.1016/j.drudis.2024.104216.
33.Peiffer-Smadja N, Rawson TM, Ahmad R, et al. Machine learning for clinical decision support in infectious diseases: a narrative review of current applications[J]. Clin Microbiol Infect, 2020, 26(5):584-595. DOI: 10.1016/j.cmi.2019.09.009.
34.王涛, 郑明节, 刘红亮, 等. 人工智能在美国药物警戒中的应用现状及启示[J]. 中国药物警戒, 2023, 20(10): 1129-1133. [Wang T, Zheng MJ, Liu HL, et al. Current applications of artificial intelligence in pharmacovigilance in the USA and implications[J]. Chinese Journal of Pharmacovigilance, 2023, 20(10): 1129-1133.] DOI: 10.19803/j.1672-8629.20230224.
35.刘文东, 刘洋, 马润镒, 等. 临床试验期间智能化药物警戒体系的建设与应用[J]. 中国食品药品监管,2023, (9): 90-97. [Liu WD, Liu Y, Ma RY, et al. Intelligent pharmacovigilance system construction for clinical trial safety evaluation and risk warning[J]. China Food & Drug Administration Magazine, 2023, (9): 90-97.] DOI: 10.3969/j.issn.1673-5390.2023.09.011.
36.Salvo F, Micallef J, Lahouegue A, et al. Will the future of pharmacovigilance be more automated?[J]. Expert Opin Drug Saf, 2023, 22(7): 541-548. DOI: 10.1080/14740338.2023.2227091.
37.Pilipiec P, Liwicki M, Bota A. Using machine learning for pharmacovigilance: a systematic review[J]. Pharmaceutics, 2022, 14(2): 266. DOI: 10.3390/pharmaceutics14020266.
38.Kaas-Hansen BS, Gentile S, Caioli A, et al. Exploratory pharmacovigilance with machine learning in big patient data: A focused scoping review[J]. Basic Clin Pharmacol Toxicol, 2023,132(3):233-241. DOI: 10.1111/bcpt.13828.
39.李诗然, 李鹏飞, 谢婧娴, 等. 个体化用药的基础研究和临床实践研究进展[J]. 中国临床药学杂志, 2024, 33(9): 713-720. [Li SR, Li PF, Xie JX, et al. Advances in basic research and clinical practice of individualized medication[J]. Chinese Journal of Clinical Pharmacy, 2024, 33(9): 713-720.] DOI: 10.19577/j.1007-4406.2024.09.016.
40.陈怡, 牟弘毅, 李雪艳. 智慧化VTE管理系统在肝胆胰外科患者围手术期的应用与效果分析[J]. 医院管理论坛, 2023, 40(3): 40-42. [Chen Y, Mou HY, Li XY, et al. Application and effect analysis of intelligent VTE management system in perioperative period of patients undergoing hepatobiliary and pancreatic surgery[J]. Hospital Management Forum, 2023, 40(3): 40-42.] DOI: 10.3969/j.issn.1671-9069.2023.03.010.
41.张瑛, 李雪松, 苗健, 等. 基于医疗大数据的围手术期预警平台建设与应用[J]. 中国卫生质量管理, 2024, 31(7): 50-54. [Zhang Y, Li XS, Miao J, et al. Construction and application of perioperative early warning platform based on medical big data[J]. Chinese Health Quality Management, 2024, 31(7): 50-54.] DOI: 10.13912/j.cnki.chqm.2024.31.7.11.
42.Maleczek M, Laxar D, Kapral L, et al. A comparison of five algorithmic methods and machine learning pattern recognition for artifact detection in electronic records of five different vital signs: a retrospective analysis[J]. Anesthesiology, 2024, 141(1): 32-43. DOI: 10.1097/ALN.0000000000004971.
43.孔磊, 丁超, 邓炜, 等. 围术期移动管控平台的设计与应用[J]. 中国数字医学, 2018, 13(11): 87-89. [Kong L, Ding C, Deng W, et al. Design and application of the perioperative mobile management and control platform[J]. China Digital Medicine, 2018, 13(11): 87-89.] DOI: 10.3969/j.issn.1673-7571.2018.11.030.
44.Tunthanathip T, Sae-Heng S, Oearsakul T, et al. Machine learning applications for the prediction of surgical site infection in neurological operations[J]. Neurosurg Focus, 2019, 47(2): E7. DOI: 10.3171/2019.5.FOCUS19241.
45.颜辉, 吴芙蓉, 季鹏, 等. 个体化给药辅助决策系统JPKD对肾移植受者他克莫司血药浓度预测能力评估[J]. 器官移植, 2024, 15(4): 630-636. [Yan H, Wu FR, Ji P, et al. Evaluation of the predictive ability of individualized drug administration adjuvant decision-making system JPKD for tacrolimus blood concentration in kidney transplant recipients[J]. Organ Transplantation, 2024, 15(4): 630-636.] DOI: 10.3969/j.issn. 1674-7445.2024011.
46.Hechtman RK, Kipnis P, Cano J, et al. Heterogeneity of benefit from earlier time-to-antibiotics for sepsis[J]. Am J Respir Crit Care Med, 2024, 209(7): 852-860. DOI: 10.1164/rccm.202310-1800OC.
47.Kong S, Ding K, Jiang H, et al. Association between glycemic variability and persistent acute kidney injury after noncardiac major surgery: a multicenter retrospective cohort study[J]. Anesth Analg, 2024, 140(3): 636-645. DOI: 10.1213/ANE. 0000000000007131.
48.Chen L, Sun J, Kong S, et al. Acute kidney disease and postoperative glycemia variability in patients undergoing cardiac surgery: a multicenter cohort analysis of 8,090 patients[J]. J Clin Anesth, 2025, 100: 111706. DOI: 10.1016/j.jclinane.2024.111706.
49.Chen L, Hong L, Ma A, et al. Intraoperative venous congestion rather than hypotension is associated with acute adverse kidney events after cardiac surgery: a retrospective cohort study[J]. Br J Anaesth, 2022, 128(5): 785-795. DOI: 10.1016/j.bja.2022.01.032.
50.Lim L, Lee H, Jung CW, et al. INSPIRE, a publicly available research dataset for perioperative medicine[J]. Sci Data, 2024, 11(1): 655. DOI: 10.1038/s41597-024-03517-4.
51.Johnson AEW, Bulgarelli L, Shen L, et al. MIMIC-IV, a freely accessible electronic health record dataset[J]. Sci Data, 2023, 10(1): 1. DOI: 10.1038/s41597-022-01899-x.
52.毛中亮, 冯莉, 娄景盛, 等. 围术期多中心数据中心的设计与应用[J]. 中国医疗器械杂志, 2021, 45(3): 292-295. [Mao ZL, Feng L, Lou JS, et al. Design and application of perioperative multi-center data center[J]. Chinese Journal of Medical Instrumentation, 2021, 45(3): 292-295.] DOI: 10.3969/j.issn.1671-7104.2021.03.013.
53.Harris PA, Taylor R, Minor BL, et al. The REDCap consortium: Building an international community of software platform partners[J]. J Biomed Inform, 2019, 95: 103208. DOI: 10.1016/j.jbi.2019.103208.
54.Chen L, Hong L, Ma A, et al. Intraoperative venous congestion rather than hypotension is associated with acute adverse kidney events after cardiac surgery: a retrospective cohort study[J]. Br J Anaesth, 2022, 128(5): 785-795. DOI: 10.1016/j.bja.2022.01.032.
55.Kong S, Ding K, Jiang H, et al. Association between glycemic variability and persistent acute kidney injury after noncardiac major surgery: a multicenter retrospective cohort study[J]. Anesth Analg, 2025, 140(3): 636-645. DOI: 10.1213/ANE.0000000000007131.
56.Chen L, Sun J, Kong S, et al. Acute kidney disease and postoperative glycemia variability in patients undergoing cardiac surgery: a multicenter cohort analysis of 8,090 patients[J]. J Clin Anesth, 2025, 100: 111706. DOI: 10.1016/j.jclinane.2024.111706.
57.蒲杰, 胡益民. 人工智能在麻醉与围术期应用的研究进展[J]. 实用老年医学, 2023, 37(9): 873-877. DOI: 10.3969/j.issn.1003-9198.2023.09.003.
58.Shen J, Zhang CJP, Jiang B, et al. Artificial intelligence versus clinicians in disease diagnosis: systematic review[J]. JMIR Med Inform, 2019, 7(3): e10010. DOI: 10.2196/10010.
59.易斌, 刘祥, 刘江. 大模型在围术期医学中应用的前景[J]. 中华麻醉学杂志, 2023, 43(7): 773-777. DOI: 10.3760/cma.j.cn131073.20230516.00702.
60.Angel MC, Rinehart JB, Canneson MP, et al. Clinical knowledge and reasoning abilities of AI large language models in anesthesiology: a comparative study on the american board of anesthesiology examination[J]. Anesth Analg, 2024, 139(2): 349-356. DOI: 10.1213/ANE.0000000000006892.