Welcome to visit Zhongnan Medical Journal Press Series journal website!

Home Articles Vol 34,2025 No.8 Detail

Research progress on artificial intelligence methods and applications for small sample data in medicine

Published on Aug. 29, 2025Total Views: 39 times Total Downloads: 10 times Download Mobile

Author: WANG Longhao QIAN Li WU Yazhou

Affiliation: Department of Military Health Statistics, Faculty of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China

Keywords: Small sample data Artificial intelligence methods Medical applications

DOI: 10.12173/j.issn.1005-0698.202412135

Reference: WANG Longhao, QIAN Li, WU Yazhou. Research progress on artificial intelligence methods and applications for small sample data in medicine[J]. Yaowu Liuxingbingxue Zazhi, 2025, 34(8): 938-951. DOI: 10.12173/j.issn.1005-0698.202412135.[Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

Artificial intelligence methods are developing rapidly in the medical field. However, the effectiveness of model training relies heavily on the support of sufficient sample sizes. Due to various constraints such as privacy, security, ethics, and costs in the medical field, it is rather difficult to obtain a large number of labeled training samples. Problems like the scarcity of rare disease cases, the lack of biological data for drug molecule mining, and the shortage of high-quality annotations for medical images significantly reduce the ability of models to learn from observed data, which in turn leads to poor prediction performance. In this context, constructing efficient learning artificial intelligence models for small sample data is of far-reaching significance both theoretically and practically. On the one hand, it can help to explore potential patterns when samples are insufficient in the early stage of new research. On the other hand, high-quality models can effectively reduce the cost of manual annotation, shorten the research cycle, and provide opportunities for solving challenging problems in medical research where it is difficult to collect a sufficient number of samples. Driven by both the expected advantages and actual needs, the research on artificial intelligence for small sample data has gradually become a highly anticipated and important research direction. This review systematically collates and summarizes the principles, advantages, disadvantages, applicable scenarios, and principal challenges associated with six artificial intelligence methods currently employed in the context of small-sample medical data, namely generative adversarial networks, graph neural networks, transfer learning, reinforcement learning, and Meta-learning. Furthermore, the review provides an extensive outlook and in-depth contemplation on the future trajectory of artificial intelligence methodologies in the realm of small sample data in medicine.

Full-text
Please download the PDF version to read the full text: download
References

1.Mayer B, Kringel D, Lötsch J. Artificial intelligence and machine learning in clinical pharmacological research[J]. Expert Rev Clin Pharmacol, 2024, 17(1): 79-91. DOI: 10.1080/17512433.2023.2294005.

2.Al-Antari MA. Advancements in artificial intelligence for medical computer-aided diagnosis[J]. Diagnostics, 2024, 14(12): 1265. DOI: 10.3390/diagnostics14121265.

3.Li X, Zhao L, Zhang L, et al. Artificial general intelligence for medical imaging analysis[J]. IEEE Rev Biomed Eng, 2025, 18: 113-129. DOI: 10.1109/RBME.2024.3493775.

4.Price WN, Cohen IG. Privacy in the age of medical big data[J]. Nat Med, 2019, 25(1): 37-43. DOI: 10.1038/s41591-018-0272-7.

5.Meszaros J, Minari J, Huys I. The future regulation of artificial intelligence systems in healthcare services and medical research in the European Union[J]. Front Genet, 2022, 13: 927721. DOI: 10.3389/fgene.2022.927721.

6.Wojtara M, Rana E, Rahman T, et al. Artificial intelligence in rare disease diagnosis and treatment[J]. Clin Transl Sci, 2023, 16(11): 2106-2111. DOI: 10.1111/cts.13619.

7.Gupta R, Srivastava D, Sahu M, et al. Artificial intelligence to deep learning: machine intelligence approach for drug discovery[J]. Mol Divers, 2021, 25(3): 1315-1360. DOI: 10.1007/s11030-021-10217-3.

8.Gangwal A, Ansari A, Ahmad I, et al. Current strategies to address data scarcity in artificial intelligence-based drug discovery: a comprehensive review[J]. Comput Biol Med, 2024, 179: 108734. DOI: 10.1016/j.compbiomed.2024.108734.

9.Rodler S, Ganjavi C, De Backer P, et al. Generative artificial intelligence in surgery[J]. Surgery, 2024, 175(6): 1496-1502. DOI: 10.1016/j.surg.2024.02.019.

10.Vella D, Ebejer JP. Few-shot learning for low-data drug discovery[J]. J Chem Inf Model, 2023, 63(1): 27-42. DOI: 10.1021/acs.jcim.2c00779.

11.Ye Z, Yang G, Jin X, et al. Rebalanced zero-shot learning[J]. IEEE Trans Image Process, 2023, 32: 4185-4198. DOI: 10.1109/TIP.2023.3295738.

12.潘雪玲, 李国和, 郑艺峰. 面向深度网络的小样本学习综述[J]. 计算机应用研究, 2023, 40(10): 2881-2888, 2895. [Pan XL, Li GH, Zheng YF, et al. Survey on few-shot learning for deep network[J]. Application Research of Computers, 2023, 40(10): 2881-2888, 2895.] DOI: 10.19734/j.issn.1001-3695. 2023.02.0074.

13.Creswell A, White T, Dumoulin V, et al. Generative adversarial networks: an overview[J]. IEEE Signal Process Mag, 2018, 35(1): 53-65. DOI: 10.1109/MSP.2017.2765202.

de la Torre J. Redes generativas adversarias (GAN) fundamentos teóricos y aplicaciones[EB/OL]. (2023-02-18) [2024-10-17].  https://doi.org/10.48550/arXiv.2302.09346.

15.Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial networks[J]. Commun ACM, 2020, 63(11): 139-144. DOI: 10.1145/3422622.

Radford A, Metz L, Chintala S. Unsupervised representation learning with deep convolutional generative adversarial networks[EB/OL]. (2016-01-07) [2024-10-17]. https://doi.org/10.48550/arXiv.1511.06434.

17.Mirza M, Osindero S. Conditional generative adversarial nets[EB/OL]. (2014-11-06) [2024-10-17]. https://doi.org/10.48550/arXiv.1411.1784.

Odena A, Olah C, Shlens J. Conditional image synthesis with auxiliary classifier GANs[EB/OL]. (2017-07-20) [2024-10-17]. https://doi.org/10.48550/arXiv.1610.09585.

19.Salimans T, Goodfellow I, Zaremba W, et al. Improved techniques for training GANs[EB/OL]. (2016-06-10) [2024-10-17]. https://doi.org/10.48550/arXiv.1606.03498.

20.Kalemati M, Zamani Emani M, Koohi S. DCGAN-DTA: predicting drug-target binding affinity with deep convolutional generative adversarial networks[J]. BMC Genomics, 2024, 25(1): 411. DOI: 10.1186/s12864-024-10326-x.

21.Jayalakshmy S, Sudha GF. Conditional GAN based augmentation for predictive modeling of respiratory signals[J]. Comput Methods Programs Biomed, 2021, 138: 104930. DOI: 10.1016/j.compbiomed.2021.104930.

22.Waheed A, Goyal M, Gupta D, et al. CovidGAN: data augmentation using auxiliary classifier GAN for improved Covid-19 detection[J]. IEEE Access, 2020, 8: 91916-91923. DOI: 10.1109/ACCESS.2020.2994762.

23.Pang T, Wong JHD, NG WL, et al. Semi-supervised GAN-based radiomics model for data augmentation in breast ultrasound mass classification[J]. Comput Methods Programs Biomed, 2021, 203: 106018. DOI: 10.1016/j.cmpb.2021.106018.

Xu K, Hu W, Leskovec J, et al. How powerful are graph neural networks?[EB/OL]. (2019-02-22) [2024-10-17]. https://doi.org/10.48550/arXiv.1810.00826.

25.Waikhom L, Patgiri R. Graph neural networks: methods, applications, and opportunities[EB/OL]. (2021-09-08) [2024-10-17]. https://doi.org/10.48550/arXiv.2108.10733.

26.Kipf TN, Welling M. Semi-supervised classification with graph convolutional networks[EB/OL]. (2017-02-22) [2024-10-17]. https://doi.org/10.48550/arXiv.1609.02907.

27.Oh J, Cho K, Bruna J. Advancing GraphSAGE with a data-driven node sampling[EB/OL]. (2019-04-29) [2024-10-17]. https://doi.org/10.48550/arXiv.1904.12935.

28.Brody S, Alon U, Yahav E. How attentive are graph attention networks?[EB/OL]. (2022-01-31) [2024-10-17]. https://doi.org/10.48550/arXiv.2105.14491.

Kipf TN, Welling M. Variational graph auto-encoders[EB/OL]. (2016-11-21) [2024-10-17]. https://doi.org/10.48550/arXiv.1611.07308.

30.Hou J, Wei H, Liu B. iPiDA-GCN: identification of piRNA-disease associations based on Graph Convolutional Network[J]. PLoS Comput Biol, 2022, 18(10): e1010671. DOI: 10.1371/journal.pcbi.1010671.

31.Liu W, Teng Z, Li Z, et al. CVGAE: a self-supervised generative method for gene regulatory network inference using single-cell RNA sequencing data[J]. Interdiscip Sci Comput Life Sci, 2024, 16(4): 990-1004. DOI: 10.1007/s12539-024-00633-y.

32.Gao H, Xiao J, Yin Y, et al. A mutually supervised graph attention network for few-shot segmentation: the perspective of fully utilizing limited samples[J]. IEEE Trans Neural Netw Learn Syst, 2024, 35(4): 4826-4838. DOI: 10.1109/TNNLS.2022.3155486.

33.Huang Q, Qiao C, Jing K, et al. Biomarkers identification for schizophrenia via VAE and GSDAE-based data augmentation[J]. Comput Biol Med, 2022, 146: 105603. DOI: 10.1016/j.compbiomed.2022.105603.

34.Pan SJ, Yang Q. A survey on transfer learning[J]. IEEE Trans Knowl Data Eng, 2010, 22(10): 1345-1359. DOI: 10.1109/TKDE.2009.191.

35.Zhuang F, Qi Z, Duan K, et al. A comprehensive survey on transfer learning[J]. Proc IEEE, 2021, 109(1): 43-76. DOI: 10.1109/JPROC.2020.3004555.

36.Lu Q, Liu W, Zhuo Z, et al. A transfer learning approach to few-shot segmentation of novel white matter tracts[J]. Med Image Anal, 2022, 79: 102454. DOI: 10.1016/j.media.2022.102454.

37.Ng Y, Liao MT, Chen TL, et al. Few-shot transfer learning for personalized atrial fibrillation detection using patient-based siamese network with single-lead ECG records[J]. Artif Intell Med, 2023, 144: 102644. DOI: 10.1016/j.artmed.2023.102644.

38.Mammone N, Ieracitano C, Spataro R, et al. A few-shot transfer learning approach for motion intention decoding from electroencephalographic signals[J]. Int J Neural Syst, 2024, 34(2): 2350068. DOI: 10.1142/S0129065723500685.

39.Sharifi-Noghabi H, Peng S, Zolotareva O, et al. AITL: adversarial inductive transfer learning with input and output space adaptation for pharmacogenomics[J]. Bioinformatics, 2020, 36(Suppl_1): i380-i388. DOI: 10.1093/bioinformatics/btaa442.

40.Sutton RS, Barto AG. Reinforcement learning: an introduction[J]. IEEE Trans Neural Netw, 1998, 9(5): 1054-1054. DOI: 10.1109/TNN.1998.712192.

41.Sutton RS. Reinforcement learning[C/OL]. (1992) [2024-10-18]. https://www.semanticscholar.org/paper/Reinforcement-Learning-Sutton/9bac29e1cc7420375666ca85e6ef2db47f1fa1f2.

42.Doya K. Reinforcement learning: computational theory and biological mechanisms[J]. HFSP J, 2007, 1(1): 30-40. DOI: 10.2976/1.2732246/10.2976/1.

43.Jia J, Wang W. Review of reinforcement learning research[C/OL]. (2020) [2024-10-18]. https://ieeexplore.ieee.org/document/ 9337653.

44.Jang B, Kim M, Harerimana G, et al. Q-learning algorithms: a comprehensive classification and applications[J]. IEEE Access, 2019, 7: 133653-133667. DOI: 10.1109/ACCESS.2019.2941229.

45.Lai X, Hu Q, Wang W, et al. Adaptive resource allocation method based on deep Q network for industrial internet of things[J]. IEEE Access, 2020, 8: 27426-27434. DOI: 10.1109/ACCESS.2020.2971228.

46.Li S, Wu Y, Cui X, et al. Robust multi-agent reinforcement learning via minimax deep deterministic policy gradient[J]. AAAI Conf Artif Intell, 2019, 33(1): 4213-4220. DOI: 10.1609/aaai.v33i01.33014213.

47.Schulman J, Wolski F, Dhariwal P, et al. Proximal policy optimization algorithms[EB/OL]. (2017-08-28) [2024-10-18]. https://doi.org/10.48550/arXiv.1707.06347.

48.Dou H, Tan J, Wei H, et al. Transfer inhibitory potency prediction to binary classification: A model only needs a small training set[J]. Comput Methods Programs Biomed, 2022, 215: 106633. DOI: 10.1016/j.cmpb.2022.106633.

49.Cui L, Lu Y, Sun J, et al. RFLMDA: a novel reinforcement learning-based computational model for human microRNA-disease association prediction[J]. Biomolecules, 2021, 11(12): 1835. DOI: 10.3390/biom11121835.

50.Wang X, Ma Z, Cao L, et al. A planar tracking strategy based on multiple-interpretable improved PPO algorithm with few-shot technique[J]. Sci Rep, 2024, 14(1): 3910. DOI: 10.1038/s41598-024-54268-6.

51.Xu C, Zhang T, Zhang D, et al. Deep generative adversarial reinforcement learning for semi-supervised segmentation of low-contrast and small objects in medical images[J]. IEEE Trans Med Imaging, 2024, 43(9): 3072-3084. DOI: 10.1109/TMI.2024.3383716.

52.Zhu H, Cheng H, Yang X, et al. Metric learning for multi-atlas based segmentation of hippocampus[J]. Neuroinformatics, 2017, 15(1): 41-50. DOI: 10.1007/s12021-016-9312-y.

53.Song HO, Xiang Y, Jegelka S, et al. Deep metric learning via lifted structured feature embedding[C/OL]. (2016) [2024-10-18]. https://ieeexplore.ieee.org/document/7780803.

54.He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C/OL]. (2016) [2024-10-18]. https://ieeexplore.ieee.org/document/7780459.

55.Luo H, Zhu C, Wang J, et al. Prediction of drug-disease associations based on reinforcement symmetric metric learning and graph convolution network[J]. Front Pharmacol, 2024, 15: 1337764. DOI: 10.3389/fphar.2024.1337764.

56.Luo H, Wang J, Yan C, et al. A novel drug repositioning approach based on collaborative metric learning[J]. IEEE/ACM Trans Comput Biol Bioinform, 2021, 18(2): 463-471. DOI: 10.1109/TCBB.2019.2926453.

57.Zhang L, Abdeen N, Lang J. A novel center-based deep contrastive metric learning method for the detection of polymicrogyria in pediatric brain MRI[J]. Comput Med Imaging Graph, 2024, 114: 102373. DOI: 10.1016/j.compmedimag.2024.102373.

58.Finn C, Abbeel P, Levine S. Model-agnostic Meta-learning for fast adaptation of deep networks[EB/OL]. (2017-07-18) [2024-10-18]. https://doi.org/10.48550/arXiv.1703.03400.

59.Elsken T, Staffler B, Metzen JH, et al. Meta-learning of neural architectures for few-shot learning[C/OL]. (2020) [2024-10-18]. https://ieeexplore.ieee.org/document/9157641.

60.Franceschi L, Frasconi P, Salzo S, et al. Bilevel programming for hyperparameter optimization and Meta-learning[EB/OL]. (2018-07-03) [2024-10-18]. https://doi.org/10.48550/arXiv.1806.04910.

61.Nguyen NP, Lopez S, Smith CL, et al. Axon and myelin sheath segmentation in electron microscopy images using Meta learning[J/OL]. IEEE Appl Imag Pattern Recognit Workshop, 1-15. [2023-05-19]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10197949/.

62.Shi P, Xin J, Du S, et al. Automatic lumen and anatomical layers segmentation in IVOCT images using Meta learning[J]. J Biophotonics, 2023, 16(9): e202300059. DOI: 10.1002/jbio.202300059.

63.Chen KH, Hu YJ. Residue-residue interaction prediction via stacked Meta-learning[J]. Int J Mol Sci, 2021, 22(12): 6393. DOI: 10.3390/ijms22126393.

64.Zhang Y, Qiu L, Ren Y, et al. A Meta-learning approach to improving radiation response prediction in cancers[J]. Comput Biol Med, 2022, 150: 106163. DOI: 10.1016/j.compbiomed. 2022.106163.

65.Landrum GA, Riniker S. Combining IC50 or ki values from different sources is a source of significant noise[J]. J Chem Inf Model, 2024, 64(5): 1560-1567. DOI: 10.1021/acs.jcim.4c00049.

66.Kurczab R, Smusz S, Bojarski AJ. The influence of negative training set size on machine learning-based virtual screening[J]. J Cheminform, 2014, 6(1): 32. DOI: 10.1186/1758-2946-6-32.

67.Zhang QQ, Zhang SW, Feng YH, et al. Few-shot drug synergy prediction with a prior-guided hypernetwork architecture[J]. IEEE Trans Pattern Anal Mach Intell, 2023, 45(8): 9709-9725. DOI: 10.1109/TPAMI.2023.3248041.

68.Liu K, Han Y, Gong Z, et al. Low-data drug design with few-shot generative domain adaptation[J]. Bioengineering, 2023, 10(9): 1104. DOI: 10.3390/bioengineering10091104.

69.Feng H, Gao K, Chen D, et al. Machine learning analysis of cocaine addiction informed by DAT, SERT, and NET-based interactome networks[J]. J Chem Theory Comput, 2022, 18(4): 2703-2719. DOI: 10.1021/acs.jctc.2c00002.

70.Shen X, Liu Y. MoLGNN: self-supervised motif learning graph neural network for drug discovery[C]. Machine Learning for Molecules Workshop at NeurIPS 2020, 2020. 4.

71.Tomczak K, Czerwińska P, Wiznerowicz M. The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge[J]. Contemp Oncol (Poznan), 2015, 19(1A): A68-A77. DOI: 10.5114/wo.2014.47136.

72.Liu Y, Zhou Y, Liu X, et al. Wasserstein GAN-based small-sample augmentation for new-generation artificial intelligence: a case study of cancer-staging data in biology[J]. Engineering, 2019, 5(1): 156-163. DOI: 10.1016/j.eng.2018.11.018.

73.Hsu TC, Lin C. Generative adversarial networks for robust breast cancer prognosis prediction with limited data size[C/OL]. (2020)[2024-10-01]. https://ieeexplore.ieee.org/document/9175736/.

74.Wei K, Li T, Huang F, et al. Cancer classification with data augmentation based on generative adversarial networks[J]. Front Comput Sci, 2021, 16(2): 162601. DOI: 10.1007/s11704-020-0025-x.

75.Protonotarios NE, KAtsamenis I, Sykiotis S, et al. A few-shot U-Net deep learning model for lung cancer lesion segmentation via PET/CT imaging[J]. Biomed Phys Eng Express, 2022, 8(2). DOI: 10.1088/2057-1976/ac53bd.

76.Gore JC. Artificial intelligence in medical imaging[J]. Magn Reson Imaging, 2020, 68: A1-A4. DOI: 10.1016/j.mri.2019.12.006.

77.Frid-Adar M, Diamant I, Klang E, et al. GAN-based synthetic medical image augmentation for increased CNN performance in liver lesion classification[J]. Neurocomputing, 2018, 321: 321-331. DOI: 10.1016/j.neucom.2018.09.013.

78.Bai Y, Yu Q, Yun B, et al. FS-MedSAM2: exploring the potential of SAM2 for few-shot medical image segmentation without fine-tuning[EB/OL]. (2024) [2024-10-08]. https://doi.org/10.48550/arXiv.2409.04298.

79.Lin Y, Chen Y, Cheng KT, et al. Few shot medical image segmentation with cross attention transformer[EB/OL]. (2023-09-21) [2024-10-08]. https://doi.org/10.48550/arXiv.2303.13867.

80.Ding H, Sun C, Tang H, et al. Few-shot medical image segmentation with cycle-resemblance attention[C/OL]. (2023)[2024-10-08]. https://ieeexplore.ieee.org/document/10030099/?arnumber=10030099.

81.Wang Y, Yao Q, Kwok JT, et al. Generalizing from a few examples: a survey on few-shot learning[J]. ACM Comput Surv, 2020, 53(3): 63. DOI: 10.1145/3386252.

82.Feng R, Zheng X, Gao T, et al. Interactive few-shot learning: limited supervision, better medical image segmentation[J]. IEEE Trans Med Imaging, 2021, 40(10): 2575-2588. DOI: 10.1109/TMI.2021.3060551.

83.Li X, Sun Z, Xue JH, et al. A concise review of recent few-shot meta-learning methods[J]. Neurocomputing, 2021, 456: 463-468. DOI: 10.1016/j.neucom.2020.05.114.

84.Li X, Yang X, Ma Z, et al. Deep metric learning for few-shot image classification: a review of recent developments[J]. Pattern Recognition, 2023, 138: 109381. DOI: 10.1016/j.patcog.2023.109381.

85.Lu MY, Chen B, Williamson DFK, et al. A visual-language foundation model for computational pathology[J]. Nat Med, 2024, 30(3): 863-874. DOI: 10.1038/s41591-024-02856-4.

86.Chen T, Lin L, Chen R, et al. Knowledge-guided multi-label few-shot learning for general image recognition[J]. IEEE TPAMI, 2022, 44(3): 1371-1384. DOI: 10.1109/TPAMI.2020.3025814.

87.Yu X, Wang J, Hong QQ, et al. Transfer learning for medical images analyses: a survey[J]. Neurocomputing, 2022, 489: 230-254. DOI: 10.1016/j.neucom.2021.08.159.

88.Song X, Mao M, Qian X. Auto-metric graph neural network based on a Meta-learning strategy for the diagnosis of Alzheimer's disease[J]. IEEE JBHI, 2021, 25(8): 3141-3152. DOI: 10.1109/JBHI.2021.3053568.

89.Candemir S, Nguyen XV, Folio LR, et al. Training strategies for radiology deep learning models in data-limited scenarios[J]. Radiol Artif Intell, 2021, 3(6): e210014. DOI: 10.1148/ryai.2021210014.

90.Song Y, Wang T, Cai P, et al. A comprehensive survey of few-shot learning: evolution, applications, challenges, and opportunities[J]. ACM Comput Surv, 2023, 55(13s): 1-40. DOI: 10.1145/3582688.

91.Tian S, Li L, Li W, et al. A survey on few-shot class-incremental learning[J]. Neural Networks, 2024, 169: 307-324. DOI: 10.1016/j.neunet.2023.10.039.

92.Patricio C, Neves JC, Lincs N, et al. Explainable deep learning methods in medical image classification: a survey[J]. ACM Comput Surv, 2024, 56(4): 85. DOI: 10.1145/3625287.

93.Lake BM, Baroni M. Human-like systematic generalization through a Meta-learning neural network[J]. Nature, 2023, 623(7985): 115-121. DOI: 10.1038/s41586-023-06668-3.

94.Zhu H, Liu W, Gao Z, et al. Explainable classification of benign-malignant pulmonary nodules with neural networks and information bottleneck[J]. IEEE TNNLS, 2023, 36(2): 2028-2039. DOI: 10.1109/TNNLS.2023.3303395.

95.Withnell E, Zhang X, Sun K, et al. XOmiVAE: an interpretable deep learning model for cancer classification using high-dimensional omics data[J]. Brief Bioinform, 2021, 22(6): bbab315. DOI: 10.1093/bib/bbab315.

96.Stahlschmidt SR, Ulfenborg B, Synnergren J. Multimodal deep learning for biomedical data fusion: a review[J]. Brief Bioinform, 2022, 23(2): bbab569. DOI: 10.1093/bib/bbab569.

97.Huisman M, Van Rijn JN, Plaat A. A survey of deep Meta-learning[J]. Artif Intell Rev, 2021, 54(6): 4483-4541. DOI: 10.1007/s10462-021-10004-4.

98.Lee K, Cavalcanti TC, Kim S, et al. Multi-task and few-shot learning-based fully automatic deep learning platform for mobile diagnosis of skin diseases[J]. IEEE JBHI, 2022, 23(2): bbab569. DOI: 10.1109/JBHI.2022.3193685.

99.Pellegrini C, Navab N, Kazi A. Unsupervised pre-training of graph transformers on patient population graphs[J]. Med Image Anal, 2023, 89: 102895. DOI: 10.1016/j.media.2023.102895.

100.Pu X, Li C. Online semisupervised broad learning system for industrial fault diagnosis[J]. IEEE TII, 2021, 17(10): 6644-6654. DOI: 10.1109/TII.2020.3048990.

101.Liu Y, Wang Y, Chen L, et al. Incremental Bayesian broad learning system and its industrial application[J]. Artif Intell Rev, 2021, 54(5): 3517-3537. DOI: 10.1007/s10462-020-09929-z.

102.Diao L, Yang W, Zhu P, et al. The research of clinical temporal knowledge graph based on deep learning[J]. J Intell Fuzzy Syst, 2021, 41(3): 4265-4274. DOI: 10.3233/JIFS-189687.

103.Lu X, Sun X, Diao W, et al. LIL: lightweight incremental learning approach through feature transfer for remote sensing image scene classification[J]. IEEE TGRS, 2022, 60: 1-20. DOI: 10.1109/TGRS.2021.3102629.

104.Hu D, Li S, Wu N, et al. A multi-modal heterogeneous graph forest to predict lymph node metastasis of non-small cell lung cancer[J]. IEEE JBHI, 2023, 27(3): 1216-1224. DOI: 10.1109/JBHI.2022.3233387.

105.Zhao F, Huang T, Wang D. Graph few-shot learning via restructuring task graph[J]. IEEE Trans Neural Netw Learn Syst, 2022, 35(1): 1-8. DOI: 10.1109/TNNLS.2022.3178849.

Popular papers
Last 6 months