Welcome to visit Zhongnan Medical Journal Press Series journal website!

Home Articles Vol 34,2025 No.8 Detail

Rare disease clinical research data collection and management challenges and digital intelligence response strategies

Published on Aug. 29, 2025Total Views: 40 times Total Downloads: 10 times Download Mobile

Author: GUO Jian 1# Gulidanna·Asihaer 2, 3# ZHANG Shuyang 1, 4, 5

Affiliation: 1. State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China 2. Institute for Hospital Management, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, China 3. Beijing Society of Rare Disease Clinical Care and Accessibility, Beijing 100020, China 4. Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China 5. Department of Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China

Keywords: Rare disease Data collection Data management Digital intelligence

DOI: 10.12173/j.issn.1005-0698.202502053

Reference: GUO Jian, Gulidanna·Asihaer, ZHANG Shuyang. Rare disease clinical research data collection and management challenges and digital intelligence response strategies[J]. Yaowu Liuxingbingxue Zazhi, 2025, 34(8): 897-907. DOI: 10.12173/j.issn.1005-0698.202502053.[Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

Rare diseases are characterized by very low incidence and prevalence rates, complex genetic mechanisms, and diverse clinical phenotypes, posing significant diagnostic and therapeutic challenges in clinical research. In principle, the design of clinical research protocols for rare diseases does not differ significantly from general clinical research. However, the difficulties mainly stem from the unique characteristics of rare diseases, which amplify the challenges and limitations inherent in general clinical research. These challenges typically involve five aspects: data collection, data management, technical methods, ethical regulations, and patient engagement. However, with the rapid development of digital technologies such as information technology, artificial intelligence (AI), and blockchain, particularly in the innovative applications of data collection, storage, analysis, sharing, and management, new opportunities have emerged for the implementation and optimization of rare disease clinical research. Strategies for conducting rare disease clinical research using digital technologies are often applied to rare disease clinical research and patient management based on digitalized registration platforms, the development of AI-driven diagnostic aids to improve the accuracy of rare disease diagnosis, the use of digital technologies for decentralized rare disease clinical research, and the promotion of data fusion from multiple sources and modalities. However, during the application process, new challenges have gradually been identified. Despite of many challenges that still exist in terms of data privacy, algorithmic fairness, and ethical norms, with the continuous maturation of technology and the improvement of ethical frameworks, digitally-intelligent-driven clinical research on rare diseases remains promising.

Full-text
Please download the PDF version to read the full text: download
References

1.Rees CA, Pica N, Monuteaux MC, et al. Noncompletion and nonpublication of trials studying rare diseases: a cross-sectional analysis[J]. PLoS Med, 2019, 16(11): e1002966. DOI: 10.1371/journal.pmed.1002966.

2.Chiò A, Logroscino G, Traynor BJ, et al. Global epidemiology of amyotrophic lateral sclerosis: a systematic review of the published literature[J]. Neuroepidemiology, 2013, 41(2): 118-130. DOI: 10.1159/000351153.

3.Tudur Smith C, Williamson PR, Beresford MW. Methodology of clinical trials for rare diseases[J]. Best Pract Res Clin Rheumatol, 2014, 28(2): 247-262. DOI: 10.1016/j.berh.2014.03.004.

4.Yan X, He S, Dong D. Determining how far an adult rare disease patient needs to travel for a definitive diagnosis: a cross-sectional examination of the 2018 National Rare Disease Survey in China[J]. Int J Environ Res Public Health, 2020, 17(5): 1757. DOI: 10.3390/ijerph17051757.

5.Nestler-Parr S, Korchagina D, Toumi M, et al. Challenges in research and health technology assessment of rare disease technologies: report of the ISPOR Rare Disease Special Interest Group[J]. Value Health, 2018, 21(5): 493-500. DOI: 10.1016/j.jval.2018.03.004.

6.De Boeck K, Amaral MD. Progress in therapies for cystic fibrosis[J]. Lancet Respir Med, 2016, 4(8): 662-674. DOI: 10.1016/s2213-2600(16)00023-0.

7.中国罕见病联盟,编著. 中国罕见病诊疗指南[M]. 北京: 人民卫生出版社, 2019: 95-97.

8.Kaufmann P, Pariser AR, Austin C. From scientific discovery to treatments for rare diseases-the view from the National Center for Advancing Translational Sciences-Office of Rare Diseases Research[J]. Orphanet J Rare Dis, 2018, 13(1): 196. DOI: 10.1186/s13023-018-0936-x.

9.Kerr K, Mcaneney H, Mcknight AJ. Protocol for a scoping review of multi-omic analysis for rare diseases[J]. BMJ Open, 2019, 9(5): e026278. DOI: 10.1136/bmjopen-2018-026278.

10.Nesbitt GC, Murphy P A. CRID-A unique, universal, patient-generated identifier to facilitate collaborative rare disease clinical research[J]. Inform Med Unlocked, 2022, 31: 100973. DOI: 10.1016/j.imu.2022.100973.

11.Bates BA, Bates KE, Boris SA, et al. Intersection of rare pathogenic variants from TCGA in the All of Us Research Program v6[J]. HGG Adv, 2025, 6(2): 100405. DOI: 10.1016/j.xhgg.2025.100405.

12.Goyal NA, Berry JD, Windebank A, et al. Addressing heterogeneity in amyotrophic lateral sclerosis CLINICAL TRIALS[J]. Muscle Nerve, 2020, 62(2): 156-166. DOI: 10.1002/mus.26801.

13.Qiao X, Lecours V, Braswell AE, et al. Identifying community practices in marine benthic data usage in Florida[J]. Ocean Coast Manage, 2024, 259: 107429. DOI: 10.1016/j.ocecoaman.2024.107429.

14.Raycheva R, Kostadinov K, Mitova E, et al. Challenges in mapping European rare disease databases, relevant for ML-based screening technologies in terms of organizational, FAIR and legal principles: scoping review[J]. Front Public Health, 2023, 11: 1214766. DOI: 10.3389/fpubh.2023.1214766.

15.Bookman RJ, Cimino JJ, Harle CA, et al. Research informatics and the COVID-19 pandemic: challenges, innovations, lessons learned, and recommendations[J]. J Clin Transl Sci, 2021, 5(1): e110. DOI: 10.1017/cts.2021.26.

16.Helzlsouer K, Meerzaman D, Taplin S, et al. Humanizing big data: recognizing the human aspect of big data[J]. Front Oncol, 2020, 10: 186. DOI: 10.3389/fonc.2020.00186.

17.Mitani AA, Haneuse S. Small data challenges of studying rare diseases[J]. JAMA Netw Open, 2020, 3(3): e201965. DOI: 10.1001/jamanetworkopen.2020.1965.

18.Avadhanula S, Introne WJ, Auh S, et al. Assessment of thyroid function in patients with alkaptonuria[J]. JAMA Netw Open, 2020, 3(3): e201357. DOI: 10.1001/jamanetworkopen.2020.1357.

19.Paulson DR, Ingleshwar A, Theis-Mahon N, et al. The correlation between oral and general health-related quality of life in adults: a systematic review and Meta-analysis[J]. J Evid Based Dent Pract, 2024, 25(1S): 102078. DOI: 10.1016/j.jebdp.2024.102078.

20.Wang Y, Zhang Y, Zhan X, et al. Machine learning for predicting protein properties: a comprehensive review[J]. Neurocomputing, 2024, 597: 128103. DOI: 10.1016/j.neucom.2024.128103.

21.Choon YW, Choon YF, Nasarudin NA, et al. Artificial intelligence and database for NGS-based diagnosis in rare disease[J]. Front Genet, 2023, 14: 1258083. DOI: 10.3389/fgene.2023.1258083.

22.Iyer AA, Barzilay JR, Tabor HK. Patient and family social media use surrounding a novel treatment for a rare genetic disease: a qualitative interview study[J]. Genet Med, 2020, 22(11): 1830-1837. DOI: 10.1038/s41436-020-0890-6.

23.Austin CP, Cutillo CM, Lau LPL, et al. Future of rare diseases research 2017-2027: an IRDiRC perspective[J]. Clin Transl Sci, 2018, 11(1): 21-27. DOI: 10.1111/cts.12500.

24.Kodra Y, Weinbach J, Posada-De-La-Paz M, et al. Recommendations for improving the quality of rare disease registries[J]. Int J Environ Res Public Health, 2018, 15(8): 1644. DOI: 10.3390/ijerph15081644.

25.Aymé S, Bellet B, Rath A. Rare diseases in ICD11: making rare diseases visible in health information systems through appropriate coding[J]. Orphanet J Rare Dis, 2015, 10: 35. DOI: 10.1186/s13023-015-0251-8.

26.Raycheva R, Kostadinov K, Mitova E, et al. Challenges in mapping European rare disease databases, relevant for ML-based screening technologies in terms of organizational, FAIR and legal principles: scoping review[J]. Front Public Health, 2023, 11: 1214766. DOI: 10.3389/fpubh.2023.1214766.

27.Gim N, Wu Y, Blazes M, et al. A clinician's guide to sharing data for AI in ophthalmology[J]. Invest Ophthalmol Vis Sci, 2024, 65(6): 21. DOI: 10.1167/iovs.65.6.21.

28.Uijterwijk BA, Lemmers DH, Moekotte AL, et al. Tackling challenges in rare diseases: the ISGACA approach on non-pancreatic cancers in the periampullary region[J]. Eur J Surg Oncol, 2024, 50(11): 108601. DOI: 10.1016/j.ejso.2024.108601.

29.Geneviève LD, Martani A, Perneger T, et al. Systemic fairness for sharing health data: perspectives from Swiss stakeholders[J]. Front Public Health, 2021, 9: 669463. DOI: 10.3389/fpubh.2021. 669463.

30.Zerka F, Urovi V, Bottari F, et al. Privacy preserving distributed learning classifiers-sequential learning with small sets of data[J]. Comput Biol Med, 2021, 136: 104716. DOI: 10.1016/j.compbiomed.2021.104716.

31.Evans EF, Shyr ZA, Traynor BJ, et al. Therapeutic development approaches to treat haploinsufficiency diseases: restoring protein levels[J]. Drug Discov Today, 2024, 29(12): 104201. DOI: 10.1016/j.drudis.2024.104201.

32.Gurevich E, Levi S, Borovitz Y, et al. Childhood hypercalciuric hypercalcemia with elevated vitamin D and suppressed parathyroid hormone: long-term follow up[J]. Front Pediatr, 2021, 9: 752312. DOI: 10.3389/fped.2021.752312.

33.Somanadhan S, Mcaneney H, Awan A, et al. Assessing the supportive care needs of parents of children with rare diseases in Ireland[J]. J Pediatr Nurs, 2025, 81: 31-42. DOI: 10.1016/j.pedn.2025.01.003.

34.郭健, 刘鹏, 荆志成, 等. 中国国家罕见病注册系统建设及应用[J]. 罕见病研究, 2022, 1(1): 7-12. [Guo J, Liu P, Jin ZC, et al. Construction and application of national rare diseases registry system of China[J]. Journal of Rare Diseases, 2022, 1(1): 7-12.] DOI: 10.12376/j.issn.2097-0501.2022.01.002.

35.郭健, 金晔, 刘鹏, 等. 中国国家罕见病注册系统数智化升级与临床应用[J]. 罕见病研究, 2025, 4(1): 54-60. [Guo J, Jin Y, Liu P, et al. Digital-intellectualized upgrade and clinical application of National Rare Diseases Registry System of China[J]. Journal of Rare Diseases, 2025, 4(1): 54-60.] DOI: 10.12376/j.issn.2097-0501.2025.01.008.

36.Hanna MG, Pantanowitz L, Dash R, et al. Future of artificial intelligence-machine learning trends in pathology and medicine[J]. Modern Pathology, 2025, 38(4): 100705. DOI: 10.1016/j.modpat.2025.100705.

37.Srivastava T, Darras BT, Wu JS, et al. Machine learning algorithms to classify spinal muscular atrophy subtypes[J]. Neurology, 2012, 79(4): 358-364. DOI: 10.1212/WNL.0b013e3182604395.

38.Rajkomar A, Oren E, Chen K, et al. Scalable and accurate deep learning with electronic health records[J]. NPJ Digit Med, 2018, 1: 18. DOI: 10.1038/s41746-018-0029-1.

39.Mak CM, Woo PPS, Song FE, et al. Computer-assisted patient identification tool in inborn errors of metabolism-potential for rare disease patient registry and big data analysis[J]. Clinica Chimica Acta, 2024, 561: 119811. DOI: 10.1016/j.cca.2024.119811.

40.Moore J, Goodson N, Wicks P, et al. What role can decentralized trial designs play to improve rare disease studies?[J]. Orphanet J Rare Dis, 2022, 17(1): 240. DOI: 10.1186/s13023-022-02388-5.

41.Rajput AR, Li Q, Ahvanooey MT. A blockchain-based secret-data sharing framework for personal health records in emergency condition[J]. Healthcare (Basel), 2021, 9(2): 206. DOI: 10.3390/healthcare9020206.

42.Houtan B, Senhaji Hafid A, Dias D. A survey on blockchain-based self-sovereign patient identity in healthcare[J]. IEEE Access, 2020, 8: 90478-90497. DOI: 10.1109/ACCESS.2020.2994090.

43.Khozin S, Coravos A. Decentralized trials in the age of real-world evidence and inclusivity in clinical investigations[J]. Clin Pharmacol Ther, 2019, 106(1): 25-27. DOI: 10.1002/cpt.1441.

44.Wu D, Yang J, Liu C, et al. GestaltMML: enhancing rare genetic disease diagnosis through multimodal machine learning combining facial images and clinical texts[J/OL]. ArXiv, 2312. [2024-04-22]. https://pmc.ncbi.nlm.nih.gov/articles/PMC11071539/.

45.Omidian H. Synergizing blockchain and artificial intelligence to enhance healthcare[J]. Drug Discovery Today, 2024, 29(9): 104111. DOI: 10.1016/j.drudis.2024.104111.

46.Marangappanavar RK, Kiran M. Inter-planetary file system enabled blockchain solution for securing healthcare records[A]//2020 Third ISEA Conference on Security and Privacy (ISEA-ISAP)[C]. IEEE, 2020: 171-178. DOI: 10.1109/ISEA-ISAP49340. 2020.235016.

47.Benchoufi M, Ravaud P. Blockchain technology for improving clinical research quality[J]. Trials, 2017, 18(1): 335. DOI: 10.1186/s13063-017-2035-z.

48.Global Alliance for Genomics and Health. GENOMICS. A federated ecosystem for sharing genomic, clinical data[J]. Science, 2016, 352(6291): 1278-1280. DOI: 10.1126/science.aaf6162.

49.Nagamani GM, Kumar CK. Design of an improved graph-based model for real-time anomaly detection in healthcare using hybrid CNN-LSTM and federated learning[J]. Heliyon, 2024, 10(24): e41071. DOI: 10.1016/j.heliyon.2024.e41071.

50.Kolobkov D, Mishra Sharma S, Medvedev A, et al. Efficacy of federated learning on genomic data: a study on the UK Biobank and the 1000 Genomes project[J]. Front Big Data, 2024, 7: 1266031. DOI: 10.3389/fdata.2024.1266031.

51.Zhao Z, Wang R, Liu M, et al. Application of machine vision in food computing: a review[J]. Food Chem, 2025, 463(Pt 4): 141238. DOI: 10.1016/j.foodchem.2024.141238.

52.Mutepfe F, Kalejahi BK, Meshgini S, et al. Generative adversarial network image synthesis method for skin lesion generation and classification[J]. J Med Signals Sens, 2021, 11(4): 237-252. DOI: 10.4103/jmss.JMSS_53_20.

53.Burton PR, Gurrin LC, Campbell MJ. Clinical significance not statistical significance: a simple Bayesian alternative to P values[J]. J Epidemiol Community Health, 1998, 52(5): 318-323. DOI: 10.1136/jech.52.5.318.

54.Fouarge E, Monseur A, Boulanger B, et al. Hierarchical Bayesian modelling of disease progression to inform clinical trial design in centronuclear myopathy[J]. Orphanet J Rare Dis, 2021, 16(1): 3. DOI: 10.1186/s13023-020-01663-7.

55.Mascalzoni D, Paradiso A, Hansson M. Rare disease research: Breaking the privacy barrier[J]. Appl Transl Genom, 2014, 3(2): 23-29. DOI: 10.1016/j.atg.2014.04.003.

56.Bitanihirwe B, Ssewanyana D, Ddumba-Nyanzi I. Pacing forward in the face of fragility: lessons from African institutions and governments' response to public health emergencies[J]. Front Public Health, 2021, 9: 714812. DOI: 10.3389/fpubh.2021. 714812.

57.D'amore S, Mckie M, Fahey A, et al. Fabry App: the value of a portable technology in recording day-to-day patient monitored information in patients with Fabry disease[J]. Orphanet J Rare Dis, 2024, 19(1): 13. DOI: 10.1186/s13023-023-02999-6.

58.Wettstein R, Sedaghat-Hamedani F, Heinze O, et al. A remote patient monitoring system with feedback mechanisms using a smartwatch: concept, implementation, and evaluation based on the activeDCM Randomized controlled trial[J]. JMIR Mhealth Uhealth, 2024, 12: e58441. DOI: 10.2196/58441.

59.Weber JS, Sznol M, Sullivan RJ, et al. A serum protein signature associated with outcome after anti-PD-1 therapy in metastatic melanoma[J]. Cancer Immunol Res, 2018, 6(1): 79-86. DOI: 10.1158/2326-6066.Cir-17-0412.

60.Hu J, Cui C, Yang W, et al. Using deep learning to predict anti-PD-1 response in melanoma and lung cancer patients from histopathology images[J]. Transl Oncol, 2021, 14(1): 100921. DOI: 10.1016/j.tranon.2020.100921.

61.Shaban-Nejad A, Michalowski M, Buckeridge DL. Health intelligence: how artificial intelligence transforms population and personalized health[J]. NPJ Digit Med, 2018, 1: 53. DOI: 10.1038/s41746-018-0058-9.

62.Gupta R, Srivastava D, Sahu M, et al. Artificial intelligence to deep learning: machine intelligence approach for drug discovery[J]. Mol Divers, 2021, 25(3): 1315-1360. DOI: 10.1007/s11030-021-10217-3.

63.Zhong F, Xing J, Li X, et al. Artificial intelligence in drug design[J]. Sci China Life Sci, 2018, 61(10): 1191-1204. DOI: 10.1007/s11427-018-9342-2.

64.Holzinger A, Haibe-Kains B, Jurisica I. Why imaging data alone is not enough: AI-based integration of imaging, omics, and clinical data[J]. Eur J Nucl Med Mol Imaging, 2019, 46(13): 2722-2730. DOI: 10.1007/s00259-019-04382-9.

65.Dagher GG, Mohler J, Milojkovic M, et al. Ancile: privacy-preserving framework for access control and interoperability of electronic health records using blockchain technology[J]. Sustain Cities Soc, 2018, 39: 283-297. DOI: 10.1016/j.scs.2018.02.014.

66.Naz M, Al-Zahrani FA, Khalid R, et al. A secure data sharing platform using blockchain and IPFS[J]. Sustainability, 2019, 11(24): 7054. DOI: 10.3390/su11247054.

67.Jamil F, Ahmad S, Iqbal N, et al. Towards a remote monitoring of patient vital signs based on iot-based blockchain integrity management platforms in smart hospitals[J]. Sensors (Basel), 2020, 20(8): 2195. DOI: 10.3390/s20082195.

68.Alshehri M. Blockchain-assisted cyber security in medical things using artificial intelligence[J]. Electron Res Arch, 2022, 31: 708-728. DOI: 10.3934/era.2023035.

69.Mahammad AB, Kumar R. Scalable and security framework to secure and maintain healthcare data using blockchain technology[C]. 2023 International Conference on Computational Intelligence and Sustainable Engineering Solutions (CISES), 2023: 417-423.

70.Li X, Wang Y, Wang D, et al. Improving rare disease classification using imperfect knowledge graph[J]. BMC Med Inform Decis Mak, 2019, 19(Suppl 5): 238. DOI: 10.1186/s12911-019-0938-1.

Popular papers
Last 6 months