欢迎访问中南医学期刊社系列期刊网站!

中国科技核心期刊

中国科技论文统计源期刊

CACJ中国应用型扩展期刊

湖北医学精品期刊

湖北省医学优秀期刊

《中国学术期刊影响因子年报》统计源期刊

WHO西太平洋地区医学索引(WPRIM)收录期刊

美国化学文摘社(CAS)数据库收录期刊

中国药学会系列期刊

百度学术索引期刊

首页 在线期刊 预先发表 详情

归肝经中药调控胆红素代谢机制的研究进展

更新时间:2025年08月13日阅读:36次 下载:8次 下载 手机版

作者: 江梦婷 咸梓诚 周寅敏 陈潮 李雪 杨铭

作者单位: 上海中医药大学附属龙华医院 Ⅰ 期临床试验研究室(上海 200032)

关键词: 胆红素 UGT1A1酶 药物转运体 中药 归肝经

基金项目: 上海市自然科学基金项目(22ZR1462100);上海申康医院发展中心医企融合创新支撑技能培训专项项目(SHDC2023CRS026);上海中医药大学科技发展项目(23KFL077);中医学-中成药临床评价平台(A1-U21-205-902)

摘要| Abstract

胆红素作为人体内的主要内源性物质,在生理范围内具有抗炎、抗氧化、细胞保护等作用,在维系机体内源性物质代谢平衡中发挥着至关重要的作用。胆红素代谢是受多种因素调控的复杂生理过程,对体内物质平衡至关重要,依赖尿苷二磷酸葡萄糖醛酸转移酶(UGT1A1酶)催化及转运体蛋白调控。基于中药归经理论并结合脏腑论治原则,归肝经中药能够引导药物到达特定的脏腑经络,具有靶向作用。归肝经中药通过多靶点调控胆红素代谢紊乱,核心机制包括:上调UGT1A1酶活性以促进胆红素结合;调控多药耐药相关蛋白2/有机阴离子转运多肽表达以增强胆红素转运;抗氧化应激以减少肝细胞损伤;抑制炎症因子以恢复代谢酶活性;激活组成型雄烷受体(CAR)通路调节胆汁酸平衡等。本文总结了中药调控胆红素代谢的机制,聚焦归肝经中药的作用,从核心机制入手,开展归肝经类中药对胆红素代谢具有显著影响,部分中药对胆红素代谢呈现出双向调节特性影响,指导其合理使用,并为中药研发提供新思路,推动中药研究现代化。

全文| Full-text

肝脏是药物代谢的重要器官,肝细胞中含有多种代谢酶、摄取及外排转运体。胆红素作为人体内非常重要的内源性物质,主要在肝脏代谢,它是临床上判定黄疸的重要依据,同时也是肝功能的重要指标[1],主要分为非结合型胆红素即间接胆红素(indirect bilirubin,IBIL)和结合型胆红素即直接胆红素(direct bilirubin,DBIL),具有抗炎、抗氧化、细胞保护等作用[2],在维系机体内源性物质代谢平衡中发挥着重要作用,若胆红素生成、摄取、结合或排泄异常,会导致代谢失衡,如可能出现血清胆红素>17.1 μmol·L-1的高胆红素血症(表现为黄疸),也可能出现血清胆红素<3.4 μmol·L-1的低胆红素血症[3]。胆红素代谢紊乱与高尿酸血症、糖尿病相关并发症、高脂血症、胆红素血症等代谢性疾病的发生和发展息息相关。目前已有研究[4]发现中药在体内会抑制或诱导胆红素相关代谢酶和转运体表现出双向调节特性,当胆红素水平过高时,这些中药可能通过促进胆红素的排泄或转化来降低其水平;而当胆红素水平过低时,它们则可能通过抑制胆红素的过度排泄或促进其合成来维持其水平稳定,从而影响胆红素的代谢。

中药在我国的应用有几千年历史,临床常与多种西药联合应用治疗疾病。临床治疗中,西医治疗高胆红素血症虽能有效降低胆红素,但存在药物性肝损伤风险。值得关注的是中药通过多靶点调控展现出独特优势,如五酯片与西药联用可显著降低血清丙氨酸转氨酶(alanine aminotransferase,ALT)、天冬氨酸转氨酶(aspartate aminotransferase,AST)、总胆红素(total bilirubin,TBIL)等指标[5]。利胆消黄汤联合苯巴比妥能协同增强降黄效果,这种双向调节特性源于中药对代谢酶/转运体的动态调控—既能抑制尿苷二磷酸葡萄糖醛酸转移酶(UDP-glucuronosyltransferase 1A1,UGT1A1)活性,促进胆红素排泄,亦可诱导多药耐药相关蛋白2(multidrug resistance associated protein 2,MRP2)转运体表达加速结合胆红素排出[6]。

黄疸辨证以湿热蕴积为主,出现“热盛”之势,热盛日久则伤阴耗气,归肝经中药药性以寒凉为主流,符合中医“热者寒之,寒者热之”的治疗原则[7]。现代研究[8]显示,柴胡、茵陈等归肝经中药既可降低病理状态下的高胆红素水平,又能改善抗氧化能力不足导致的低胆红素状态。这种基于机体需求的动态调节,既避免了治疗黄疸可能引发的代谢抑制,又可纠正低胆红素相关的氧化应激失衡,充分彰显中药整体调控特色。本文综述归肝经中药以及复方调控胆红素代谢机制的研究进展,从核心机制入手,深入研究归肝经中药对胆红素代谢的影响,指导其合理使用,并为中药研发提供新思路,推动中药研究现代化。

1 胆红素代谢过程及其调控机制

胆红素来源于人体内的血红素,是血红蛋白及其他血红素蛋白中的血红素在巨噬细胞或其他网织内皮细胞及肝细胞中的代谢产物。血红素在微粒体血红素氧合酶1、还原型辅酶II及细胞色素c还原酶的作用形成胆绿素,再由胆绿素还原酶还原为胆红素,此时的胆红素为未结合胆红素,其在血液中与白蛋白结合后运输至肝脏,肝细胞内的未结合胆红素主要被UGT1A1催化代谢,有机阴离子转运蛋白 1B1(organic aniontransporting polypeptide 1B1,OATP1B1)和有机阴离子转运蛋白 1B3(organic aniontransporting polypeptide 1B3,OATP1B3)是介导未结合胆红素肝脏摄取的主要转运体[9]。DBIL主要经胆汁排泄,其从肝细胞经主动转运进入胆汁的过程主要由肝细胞毛细管膜上的MRP2介导,经胆汁排泄进入肠道的结合胆红素几乎不被肠黏膜吸收,但仍有一部分被肠细胞水解形成IBIL,IBIL被回肠末端和结肠处的厌氧菌继续还原为尿胆素原,大部分尿胆素原被氧化为尿胆素后随粪便排出体外,小部分尿胆素样物质和未结合胆红素被肠道重吸收经门静脉回到肝脏,形成肠肝循环(图1)。

  • 图1 胆红素的代谢及其调控示意图
    Figure 1.Schematic representation of bilirubin metabolism and its regulation
    注:UCB. 未结合胆红素;PXR. 孕烷X受体;CAR. 组成型雄烷受体;UGT1A1. 尿苷二磷酸葡萄糖醛酸转移酶;OATP. 有机阴离子转运蛋白;MRP. 多药耐药蛋白;BG. 葡萄醛酸胆红素。

参与胆红素代谢过程的代谢酶和转运体主要包括UGT1A1、OATP1B1、OATP1B3、多药耐药相关蛋白1(multidrug resistance associated protein 1,MRP1)、MRP2、多药耐药相关蛋白3(multidrug resistanced associated protein 3,MRP3)、孕烷 X 受体(pregnane X receptor,PXR)和组成型雄烷受体(constitutive androstane ecreptor,CAR)等[10],此外,牛磺胆酸钠转运蛋白(sodium taurocholate contransporting polypeptide,NTCP)和胆汁盐输出泵(bile salt export pump,BSEP)作为胆汁酸外排重要蛋白和胆汁流动的主要动力,间接参与胆红素的代谢。其中,UGT1A1酶是机体参与内源性胆红素代谢清除的唯一代谢酶[11],UGT1A1基因突变会引起Crigler-Najjar综合征,导致胆红素结合受损和严重的非结合型高胆红素血症[12]。文献 [13]报道,PXR和CAR可以协同调控UGT1A1的基因表达,从而调节胆红素代谢。此外,MRP2参与阻塞性黄疸病理生理过程,MRP2缺陷可导致Dubin-Johnson综合征[14]和高胆红素血症;OATP1B1和OATP1B3缺陷会导致肝脏再摄取胆红素葡萄糖醛酸结合物能力降低,导致黄疸[15-16]。胆红素相关代谢酶和转运体在胆红素的生成、摄取、结合或排泄各环节发挥核心作用,共同维持胆红素的体内稳态平衡。

2 归肝经中药对胆红素代谢的调节机制

归肝经中药在调控胆红素代谢方面展现出多样化的机制,这些机制与药物分类紧密相关。近年临床及基础药理研究相关结果发现,归肝经中药主要有利水渗湿药、清热药、活血祛瘀药、祛风湿药、平肝息风药以及补虚药[17],具有抗炎、保肝的药理作用(表1)。

  • 表格1 归肝经中药对胆红素代谢的调节
    Table 1.Regulation of bilirubin metabolism by traditional Chinese medicines with liver meridian tropism

2.1 利水渗湿药

利水渗湿药的核心机制:促进胆汁分泌与排泄,调节代谢酶活性[18]。该类中药多为利湿退黄药,归肝、胆经,苦泄寒清而利湿,多用于湿热黄疸证。茵陈、金钱草、虎杖是该类型的代表药物。现代药理研究成果提示,该类中药都有利湿、退黄、抗炎、保肝等药理作用。其中茵陈含有多种化学成分,主要有黄酮类、香豆素类、有机酸类、挥发油类化合物等[19],能促进新生儿体内游离胆红素的肝肠循环及排泄,减轻黄疸[20]。茵陈的主要成分6,7-二甲基香豆素可以通过激活CAR受体加速肝脏中胆红素的代谢清除[21]。Okada等[22]使用大鼠和嵌合体小鼠研究了茵陈及其化学成分对MRP2介导的胆汁淤积活性的影响,发现茵陈治疗黄疸等相关胆汁淤积性疾病是通过增强肝脏和肾脏中的MRP2介导的分泌能力以及核因子E2相关因子2(nuclear factor erythroid 2-related factor 2,Nrf2)介导的抗氧化作用来增强体内胆红素清除,茵陈发挥利胆作用主要通过调节肝脏和肝外组织中的转运体来干扰胆红素的转运和代谢。槲皮素和芹菜素是茵陈所含重要黄酮类化合物,槲皮素、黄豆苷元、柚皮素、芦丁和辣椒素已被证明可有效预防肝损伤[23]。芹菜素对脂多糖诱导的急性肝损伤有预防作用。Berköz等[24]研究发现,芹菜素可降低碱性磷酸酶(alkaline phosphatase,ALP)、AST、TBIL、DBIL水平。有研究[25]证明,槲皮素能减轻利福平诱导的肝损伤,与利福平联合给药可防止ALT、AST、ALP和胆红素升高。还有研究[26]显示,茵栀黄提取物通过上调CAR表达来增加UGT1A1和MRP2表达,从而发挥退黄作用,提示该提取物可能会影响胆红素代谢。

虎杖中的蒽醌类化合物大黄素具有抗炎、抗菌、保肝的作用[27]。Ding等发现,大黄素可治疗α-异硫氰酸萘酯[28-29]诱导的SD大鼠淤胆型肝炎,下调模型组TBIL、DBIL、总胆汁酸(total bile acid,TBA)TBA、ALP、ALT、AST水平,减轻肝组织损伤程度,并上调法尼醇X受体(farnesoid X receptor,FXR)及其下游BSEP的mRNA表达,抑制TBA的生成,促进胆红素的排泄,最终起到治疗作用。这表明大黄素治疗后表现出较强的抑制-萘基异硫氰酸酯(α-naphthylisothiocyanate,ANIT)ANIT毒性并表明大黄素对TBIL、DBIL有显著影响。大黄素对UGT1A1产生强烈的抑制作用,这提示大黄素会对胆红素代谢产生影响[30-33],另外,Wei等[34]也发现,大黄素长期灌胃(40,80 mg·kg-1·d-1, 30 d)可升高SD大鼠血清中ALT、TBA、DBIL和TBIL的含量,并下调UGT1A1的基因和蛋白表达水平,导致胆红素蓄积引发肝损伤。虎杖中的白藜芦醇是一种多酚类化合物,对ANIT诱导的胆汁淤积具有保护作用[35],Wang等[36]研究显示,白藜芦醇能增强MRP2的表达,显著抑制MRP3的表达,但对NTCP或BSEP蛋白表达几乎没有影响。结果表明,在肝肠循环中,白藜芦醇使胆红素相关转运蛋白恢复至正常水平,从而有效调节了胆红素的稳态平衡。

金钱草的有效成分夏佛塔苷具有广泛药理活性,临床多用于治疗湿热黄疸。Liu等[37]以高脂饮食诱导的小鼠脂肪性肝损伤为模型进行研究,结果表明夏佛塔苷能改善肝损伤,可能与其上调FXR减少肝脏中的脂质代谢,促进结合胆红素通过BSEP等转运蛋白进入胆道系统有关。

2.2 清热药

清热药的核心机制:改善肝脏功能,调节胆红素转运相关转运体蛋白[38]。该类归肝经类药主要是清热燥湿药,多为寒性药,以黄芩、龙胆、水飞蓟、赤芍为代表,主要功效是泻火燥湿,其中黄酮类化合物是黄芩中最主要的活性成分,黄芩中的黄芩苷具有明显的抗氧化、抗炎功效。有研究[39]发现,黄芩在治疗肝损伤时,能增加胆汁外排,且黄芩苷能显著增加MRP2的表达,这表明MRP2在黄芩苷的胆汁外排中起重要作用,可以增强胆红素代谢而改善肝内胆管中的胆汁淤积,提示黄芩可增强MRP2介导的利胆活性。龙胆的主要成分龙胆苦苷能促进胆汁向胆管排泌促进胆红素排泄,机制可能与上调肝细胞毛细胆管的胆汁酸转运蛋白有关[40]。赤芍具有清热凉血、活血的功效,用于治疗心血管疾病及炎症,包括肝炎血瘀证等。大剂量赤芍提取物能有效降低胆汁淤积症患者的ALT、AST、TBIL和DBIL水平[41]。另有研究[42]表明赤芍中的赤芍总苷对ANIT所致急性淤胆性肝炎有明显治疗作用。Sun等[43]建立ANIT胆汁淤积性大鼠模型,观察赤芍对肝细胞膜上NTCP、MRP2和BSEP的影响。结果大鼠服用ANIT后MRP2上升,BSEP和NTCP下降,经赤芍提取物处理后MRP2和BSEP的水平并无显著变化,但NTCP基因表达和NTCP水平均呈剂量依赖性恢复,表明赤芍提取物可剂量依赖性提高NTCP水平。研究[44]表明,赤芍合用他药对胆红素持续增高者亦有较好的效果。

水飞蓟主要活性成分水飞蓟宾能降低利福平诱导小鼠肝损伤中的ALT、AST、TBIL、TBA水平,研究发现,水飞蓟宾能够显著上调NTCP、BSEP的表达,从而改善药物性肝损伤胆汁淤积的症状[45]。Wlcek等[46]研究表明在高剂量静脉注射水飞蓟宾治疗期间观察到血清胆红素水平升高这可能是由于抑制胆红素转运体OATP和外排转运蛋白MRP2引起的。水飞蓟中的水飞蓟素能降低UGT1A1酶活性,降低胆红素含量[47]。文献[48]报道,30%~40%的肝病患者使用水飞蓟提取物保肝治疗,水飞蓟提取物可抑制UGT1A1底物(胆红素)的肠道葡萄糖醛酸化,提示水飞蓟提取物可能影响胆红素代谢。

2.3 活血祛瘀药

活血祛瘀药的核心机制:改善肝脏微循环,促进肝细胞修复[49]。中医认为黄疸临床多见瘀血之象,系因肝病日久,入血成瘀所致[50]。亦有人提出“黄疽必伤血,治黄要活血”的看法。该类中药大部分归肝经,以芍药、藏红花、丹参为代表,Zhao等[51]研究发现,芍药治疗可降低ANIT引起的血清ALT、AST、ATP、TBIL、DBIL、TBA水平升高,芍药的活性成分芍药苷能恢复NTCP、BSEP、MRP2的相对蛋白表达,提示芍药苷减轻ANIT诱导胆汁淤积的作用机制可能与降低肝细胞转运蛋白如NTCP、BSEP以及MRP2的过度表达有关。藏红花主要活性成分是藏红花素 Ⅰ,研究 [52]表明其具有保护肝脏的作用,能改善ANIT诱导胆汁淤积所致胆红素升高[53]。丹参是临床常用中药材,具有活血祛瘀、通经止痛之功效。丹参主要化学成分包括脂溶性的二萜丹参酮类和水溶性的酚酸类。Zhang等[54]以4-Mu为底物,考察了丹参酮类化合物对多种UGT酶的抑制作用,发现丹参酮I、丹参酮IIA、隐丹参酮及二氢丹参酮I对UGT1A1有轻微抑制作用。Guo等[55]发现丹酚酸A、丹酚酸B、丹参素、原儿茶醛、迷迭香酸对UGT1A1介导的胆红素葡萄糖醛酸化反应表现出不同程度的抑制作用,其中丹酚酸A和丹酚酸B对UGT1A1表现出了较强的抑制作用,丹参素能改善四氯化碳诱导的肝纤维化大鼠的ALT、AST和TBIL水平,通过抑制氧化应激和炎症反应,对四氯化碳诱导的肝纤维化产生影响,这可能与其调节Nrf2/血红素加氧酶1(heme oxygenase-1,HO-1)与核因子κB(nuclear factor-kappa B,NF-κB)/κB抑制蛋白α(inhibitor of kappa B alpha)IκBα)信号通路有关[56]。

2.4 祛风湿药

祛风湿药的核心机制:抗炎镇痛,减轻胆道炎症[57]。雷公藤属于祛风湿药中的祛风湿热药,其药性寒,味苦、辛,有大毒,归肝、肾经。研究[58]发现雷公藤能显著上调大鼠肝脏中FXR、BSEP的表达,促进胆汁酸合成,抑制胆汁酸外排,可引起血浆ALP、TBA、TBIL水平显著升高,提示雷公藤可能会导致胆汁淤积型肝损伤的发生。

黄秦艽归肝经,研究[59]结果表明,黄秦艽的主要成分是龙胆苦苷,能显著降低ALT、AST、TBIL和DBIL等指标,显著上调肝脏中的FXR和BSEP mRNA水平,改善ANIT诱导的肝脏炎性细胞浸润,调节以FXR为核心的胆汁酸代谢通路,降低肝内胆汁酸水平,维持胆汁酸平衡,还可显著下调NTCP mRNA表达,减少了胆汁酸重摄取进肝脏。

2.5 平肝息风药

平肝息风药中,牛黄归肝经,具有抗炎、保肝的药理作用。牛黄包括天然牛黄、体外培育牛黄,主要含熊去氧胆酸,能促进胆汁酸分泌,调整胆汁酸比例,显著降低血清胆红素、TBA、胆固醇水平,缓解妊娠期肝内胆汁淤积、原发性胆汁性肝硬化、原发性硬化性胆管炎、胆结石等病症下肝细胞、胆管及其他超微结构的损伤[60]。主要核心机制可能为:①补充生理性亲水类胆汁酸如熊去氧胆酸,改变胆汁组成;②调控肝胆胆汁酸转运泵系统,加速疏水性胆汁酸和其他成分排泄;③抗凋亡作用。

2.6 补虚药

补虚药的核心机制:阻断胆红素和胆汁酸代谢途径[61]。补虚药中何首乌归肝经,是常见的生熟异用中药,生何首乌和制何首乌都有肝毒性[62-63]。生何首乌对UGT1A1酶有强抑制作用[64]。Tang等[65]通过实验推测何首乌可能通过抑制MRP2,导致胆红素的胆汁排泄减少,从而引发胆汁淤积。另有研究[64]发现,生何首乌提取物在体内外均可抑制大鼠UGT1A1酶活性,提示其肝毒性可能与抑制胆红素代谢酶,导致胆红素升高相关。Wang等[66]发现生何首乌提取物可以同时阻断胆红素和胆汁酸代谢途径,作用方式包括降低UGT1A1活性,下调胆红素和胆汁酸摄取转运蛋白OATP1B1、OATP1B3,以及外排转运蛋白MRP2和BSEP,上调外排转运蛋白MRP3,这显示何首乌能通过调节UGT1A1酶和转运体来影响胆红素的代谢。何首乌经过炮制后毒性降低且滋补功效增强。Gong等[62]研究发现,生何首乌可使实验动物血清ALT、AST、ALP、DBIL和TBIL水平显著升高,IBIL和TBA水平显著降低,而制何首乌组血清指标无显著变化。胆红素外排实验结果[65]显示,制何首乌对胆红素的胆汁排泄有一定抑制作用,推测制何首乌可能是通过抑制MRP2,导致胆红素的胆汁排泄减少,从而引发胆汁淤积。

3 含归肝经类中药复方对胆红素代谢的调节

研究发现,一些含归肝经中药与其他中药配伍使用会导致胆汁中的胆红素升高或降低。如茵丹汤、胆宁片、复方益肝灵胶囊、茵栀黄、利胆消黄汤、益气养阴方均可调节胆红素代谢保护肝脏[8]。Ding等[71]研究显示,胆宁片通过调节肝肾转运蛋白以及肝代谢酶表达,促进胆红素消除,避免胆红素淤积于肝脏引起肝损伤。此外,胆宁片还能扭转ANIT所致谷胱甘肽过氧化物酶、过氧化氢酶活性降低,缓解胆汁淤积性损伤。Huang等[72]研究表明茵栀黄诱导胆红素代谢的机制可能是增加CAR靶基因表达,从而增加了胆红素的清除能力。利胆消黄汤能改善黄疸症状,降低胆红素水平,原因可能是组方中茵陈篙等中药的活性成分诱导胆红素代谢[6]。复方益肝灵具有降低转氨酶、保护肝细胞、抗肝纤维化等作用,能显著减少肝损伤发生,降低患者血清ALT、AST、TBIL水平[73]。金胆片能显著降低肝内胆汁淤积病理状态下TBIL、DBIL、ALT、AST和TBA的升高程度,明显改善胆汁淤积性损伤[74]。表2总结了含归肝经中药的复方制剂对胆红素代谢的调节作用。

  • 表格2 含归肝经中药的复方制剂对胆红素代谢的影响
    Table 2.The influence of traditional Chinese medicine compound preparations containing ingredients that return to the liver and gallbladder meridians on bilirubin metabolism

4 小结

胆红素代谢是一个复杂且受多种因素调控的生理过程,在体内物质平衡中扮演关键角色。这一过程不仅依赖于UGT1A1酶的催化作用,还受到转运体蛋白的精密调控。值得注意的是,归肝经中药对胆红素代谢具有显著影响,呈现出双向调节特性:①茵陈、金钱草、虎杖、黄芩、龙胆、水飞蓟、赤芍、芍药、藏红花、丹参、牛黄、黄秦艽等中药,通过激活相关转运体和代谢酶的活性,能够有效促进胆红素排泄,为临床治疗高胆红素血症及黄疸相关疾病提供了重要手段;②虎杖、水飞蓟、雷公藤、何首乌等药物则可能产生相反作用,抑制胆红素代谢通路,导致胆红素在体内异常蓄积,进而引发肝损伤。这种抑制作用多源于中药成分的复杂药理特性,其中既包含治疗作用,也可能伴随潜在毒性反应。因此,在利用中药治疗胆红素代谢相关疾病时,明确中药对胆红素代谢的调节有助于未来指导临床上中药制剂的合理使用,旨在为临床归肝经中药可以更好的在治疗与胆红素代谢相关疾病方面上提供了参考意义,进而指导中药的合理使用。

利益冲突声明:作者声明本研究不存在任何经济或非经济利益冲突。

参考文献| References

1.Punzo A, Trézéguet V, Amoêdo ND, et al. Rewiring lipid metabolism by targeting PCSK9 and HMGCR to treat liver cancer[J]. Cancers (Basel), 2022, 15(1): 3. DOI: 10.3390/cancers15010003.

2.Ramírez-Mejía MM, Castillo-Castañeda SM, Pal SC, et al. The multifaceted role of bilirubin in liver disease: a literature review[J]. J Clin Transl Hepatol, 2024, 12(11): 939-948. DOI: 10.14218/Jcth.2024.00156.

3.Tátrai P, Krajcsi P. Prediction of drug-induced hyperbilirubinemia by in vitro testing[J]. Pharmaceutics, 2020, 12(8): 755. DOI: 10.3390/pharmaceutics12080755.

4.Solé-Navais P, Juodakis J, Ytterberg K, et al. Genome-wide analyses of neonatal jaundice reveal a marked departure from adult bilirubin metabolism[J]. Nat Commun, 2024, 15(1): 7550. DOI: 10.1038/s41467-024-51947-w.

5.李丹青, 陈沛熙. 五酯片预防索拉非尼致原发性肝癌患者肝损伤的效果[J]. 广东医学, 2018, 39(20): 3105-3107. [Li DQ, Chen PX. Effect of Wuzhi tablets in preventing sorafenib-induced liver injury in patients with primary liver cancer[J]. Guangdong Medical Journal, 2018, 39(20): 3105-3107.] DOI: 10.13820/j.cnki.gdyx.2018.20.014.

6.黄礼永. 利胆消黄汤联合苯巴比妥片及枯草杆菌二联活菌颗粒治疗病理性黄疸的效果[J]. 临床合理用药, 2023, 16(28): 134-136. [Huang LY. The effect of Lidan Xiaohuang decoction combined with phenobarbital tablets and live combined bacillus subtilis and enterococcus faecium granules in the treatment of pathological jaundice[J]. Chinese Journal of Clinical Rational Drug Use, 2023, 16(28): 134-136.] DOI: 10.15887/j.cnki.13-1389/r.2023.28.040.

7.王洋洋, 匡海学, 苏发智, 等. 中药四性的临床应用价值及与五味的关系[J]. 中草药, 2023, 54(4): 1329-1341. [Wang YY, Kuang HX, Su FZ, et al. Clinical application value of the four natures of traditional Chinese medicines and their relationship with the five flavors[J]. Chinese Traditional and Herbal Drugs, 2023, 54(4): 1329-1341.] DOI: cn/10.7501/j.issn.0253-2670. 2023.04.034.

8.Liu JJ, Xu Y, Chen S, et al. The mechanism of Yinchenhao decoction in treating obstructive-jaundice-induced liver injury based on Nrf2 signaling pathway[J]. World J Gastroenterol, 2022, 28(32): 4635-4648. DOI: 10.3748/wjg.v28.i32.4635.

9.Hall B, Levy S, Dufault-Thompson K, et al. BilR is a gut microbial enzyme that reduces bilirubin to urobilinogen[J]. Nat Microbiol, 2024, 9(1): 173-184. DOI: 10.1038/s41564-023-01549-x.

10.Choudhuri S, Klaassen CD. Elucidation of OATP1B1 and 1B3 transporter function using transgenic rodent models and commonly known single nucleotide polymorphisms[J]. Toxicol Appl Pharmacol, 2020, 399: 115039. DOI: 10.1016/j.taap.2020.115039.

11.刘新豫, 吕侠, 吴敬敬, 等. 胆红素代谢酶UGT1A1介导的中药不良反应研究进展[J]. 药物评价研究, 2018, 41(5): 716-726. [Liu XY, Lv X, Wu JJ, et al. Advances on bilirubin-conjugating enzyme UGT1A1 associated adverse reaction of traditional Chinese medicine[J]. Drug Evaluation Research, 2018, 41(5): 716-726.] DOI: 10.7501/j.issn.1674-6376.2018.05.002.

12.Sambati V, Laudisio S, Motta M, et al. Therapeutic options for crigler-najjar syndrome: a scoping review[J]. Int J Mol Sci, 2024, 25(20): 11006. DOI: 10.3390/ijms252011006.

13.Chai X, Zeng S, Xie W. Nuclear receptors PXR and CAR: implications for drug metabolism regulation, pharmacogenomics and beyond[J]. Expert Opin Drug Metab Toxicol, 2013, 9(3): 253-266. DOI: 10.1517/17425255.2013.754010.

14.Morais MB, Machado MV. Benign inheritable disorders of bilirubin metabolism manifested by conjugated hyperbilirubinemia-a narrative review[J]. United European Gastroenterol J, 2022, 10(7): 745-753. DOI: 10.1002/ueg2.12279.

15.Fardel O, Jigorel E, Le Vee M, et al. Physiological, pharmacological and clinical features of the multidrug resistance protein 2[J]. Biomed Pharmacother, 2005, 59(3): 104-114. DOI: 10.1016/j.biopha.2005.01.005.

16.Keppler D. The roles of MRP2, MRP3, OATP1B1, and OATP1B3 in conjugated hyperbilirubinemia[J]. Drug Metab Dispos, 2014, 42(4): 561-565. DOI: 10.1124/dmd.113.055772.

17.张冰, 林志健, 主编. 临床中药学理论与实务研究[M]. 北京: 中国中医药出版社, 2022: 503-532.

18.龚雪, 牟方政, 余宗洋, 等. 郑邦本治疗慢性肝病经验[J]. 河南中医, 2019, 39(6): 856-859. [Gong X, Mu FZ, Yu ZY, et al. Zheng Bangben's experience in treating chronic liver diseases[J]. Henan Traditional Chinese Medicine, 2019, 39(6): 856-859.] DOI: 10.16367/j.issn.1003-5028.2019.06.0213.

19.Wei C, Qiu J, Wu Y, et al. Promising traditional Chinese medicine for the treatment of cholestatic liver disease process (cholestasis, hepatitis, liver fibrosis, liver cirrhosis)[J]. J Ethnopharmacol, 2022, 297: 115550. DOI: 10.1016/j.jep.2022.115550.

20.崔明明, 李倩倩. 中医药治疗新生儿高胆红素血症研究新进展[J]. 内蒙古中医药, 2024, 43(10): 140-142. [Cui MM, Li QQ. Recent advances in the research of traditional Chinese medicine in the treatment of neonatal hyperbilirubinemia[J]. Inner Mongolia Journal of Traditional Chinese Medicine, 2024, 43(10): 140-142.]DOI: 10.16040/j.cnki.cn15-1101.2024.10.018.

21.Huang W, Zhang J, Moore DD. A traditional herbal medicine enhances bilirubin clearance by activating the nuclear receptor CAR[J]. J Clin Invest, 2004, 113(1): 137-143. DOI: 10.1172/JCI18385.

22.Okada K, Shoda J, Kano M, et al. Inchinkoto, a herbal medicine, and its ingredients dually exert Mrp2/MRP2-mediated choleresis and Nrf2-mediated antioxidative action in rat livers[J]. Am J Physiol Gastrointest Liver Physiol, 2007, 292(5): G1450-G1463. DOI: 10.1152/ajpgi.00302.2006.

23.Hämäläinen M, Nieminen R, Vuorela P, et al. Anti-inflammatory effects of flavonoids: genistein, kaempferol, quercetin, and daidzein inhibit STAT-1 and NF-κB activations[J]. Mediat Inflamm, 2007, 2007: 45673. DOI: 10.1155/2007/45673.

24.Berköz M, Ünal S, Karayakar F, et al. Prophylactic effect of myricetin and apigenin against lipopolysaccharide-induced acute liver injury[J]. Mol Biol Rep, 2021, 48(9): 6363-6373. DOI: 10.1007/s11033-021-06637-x.

25.Sanjay S, Girish C, Toi PC, et al. Quercetin modulates NRF2 and NF-κB/TLR-4 pathways to protect against isoniazid- and rifampicin-induced hepatotoxicity in vivo[J]. Can J Physiol Pharmacol, 2021, 99(9): 952-963. DOI: 10.1139/cjpp-2021-0008.

26.章骁佚. 茵栀黄方“退黄”分子机制及药效物质筛选初探[D]. 兰州: 兰州大学, 2017. DOI: 10.7666/d.D01300237.

27.Jung HA, Chung HY, Yokozawa T, et al. Alaternin and emodin with hydroxyl radical inhibitory and/or scavenging activities and hepatoprotective activity on tacrine-induced cytotoxicity in HepG2 cells[J]. Arch Pharm Res, 2004, 27(9): 947-953. DOI: 10.1007/BF02975849.

28.Ding Y, Zhao L, Mei H, et al. Exploration of emodin to treat alpha-naphthylisothiocyanate-induced cholestatic hepatitis via anti-inflammatory pathway[J]. Eur J Pharmacol, 2008, 590(1-3): 377-386. DOI: 10.1016/j.ejphar.2008.06.044.

29.Van de Steeg E, Stránecký V, Hartmannová H, et al. Complete OATP1B1 and OATP1B3 deficiency causes human rotor syndrome by interrupting conjugated bilirubin reuptake into the liver[J]. J Clin Invest, 2012, 122(2): 519-528. DOI: 10.1172/JCI59526.

30.Li H, Wang X, Liu Y, et al. Hepatoprotection and hepatotoxicity of Heshouwu, a Chinese medicinal herb: context of the paradoxical effect[J]. Food Chem Toxicol, 2017, 108: 407-418. DOI: 10.1016/j.fct.2016.07.035.  

31.Lin L, Ni B, Lin H, et al. Traditional usages, botany, phytochemistry, pharmacology and toxicology of Polygonum multiflorum Thunb: a review[J]. J Ethnopharmacol, 2015, 159: 158-183. DOI: 10.1016/j.jep.2014.11.009.  

32.Bounda GA, Yu F, Yu F, et al. Review of clinical studies of Polygonum multiflorum Thunb. and its isolated bioactive compounds[J]. Pharmacogn Res, 2015, 7(3): 225-236. DOI: 10.4103/0974-8490.157957.  

33.Li H, Wang X, Liu Y, et al. Hepatoprotection and hepatotoxicity of Heshouwu, a Chinese medicinal herb: Context of the paradoxical effect[J]. Food Chem Toxicol, 2017, 108(Pt B): 407-418. DOI: 10.1016/j.fct.2016.07.035.

34.韦美金, 黄娟, 白俊其, 等. 大黄素对大鼠血清肝功能、肝脏转运蛋白及代谢酶UGT1A1表达的影响[J]. 时珍国医国药, 2018, 29(7): 1551-1555. [Wei MJ, Huang J, Bai JQ, et al. Effects of emodin on serum liver function, liver transporter and metabolic enzyme UGT1A1 expression in rats[J]. Lishizhen Medicine and Materia Medica Research, 2018, 29(7): 1551-1555.] DOI: 10.3969/j.issn.1008-0805.2018.07.005.

35.Ding L, Zhang B, Li J, et al. Beneficial effect of resveratrol on α-naphthyl isothiocyanate-induced cholestasis via regulation of the FXR pathway[J]. Mol Med Rep, 2018, 17(1): 1863-1872. DOI: 10.3892/mmr.2017.8051.

36.Wang T, Zhou ZX, Sun LX, et al. Resveratrol effectively attenuates α-naphthyl-isothiocyanate-induced acute cholestasis and liver injury through choleretic and anti-inflammatory mechanisms[J]. Acta Pharmacol Sin, 2014, 35(12): 1527-1536. DOI: 10.1038/aps.2014.119.

37.Liu M, Zhang G, Wu S, et al. Schaftoside alleviates HFD-induced hepatic lipid accumulation in mice via upregulating farnesoid X receptor[J]. J Ethnopharmacol, 2020, 255: 112776. DOI: 10.1016/j.jep.2020.112776.  

38.杨小军, 张国梁. 张国梁辨治黄疸经验浅谈[J]. 中医药临床杂志, 2019, 31(9): 1625-1627. [Yang XJ, Zhang GL. A brief discussion on Zhang Guoliang's experience in the diagnosis and treatment of jaundice[J]. Clinical Journal of Traditional Chinese Medicine, 2019, 31(9): 1625-1627.] DOI: 10.16448/j.cjtcm.2019.0480.

39.Zu Y, Liu Y, Lan L, et al. Consecutive baicalin treatment relieves its accumulation in rats with intrahepatic cholestasis by increasing MRP2 expression[J]. Heliyon, 2023, 9(1): e12689. DOI: 10.1016/j.heliyon.2022.e12689.  

40.Xu S, Kong F, Sun Z, et al. Hepatoprotective effect and metabonomics studies of radix gentianae in rats with acute liver injury[J]. Pharm Biol, 2021, 59(1): 1172-1180. DOI: 10.1080/13880209.2021.1969414.

41.Ma X, Wang J, He X, et al. Large dosage of chishao in formulae for cholestatic hepatitis: a systematic review and Meta-analysis[J]. Evid Based Complement Alternat Med, 2014, 2014: 328152. DOI: 10.1155/2014/328152.  

42.Zhao Y, Zhou G, Wang J, et al. Paeoniflorin protects against ANIT-induced cholestasis by ameliorating oxidative stress in rats[J]. Food Chem Toxicol, 2013, 58: 242-248. DOI: 10.1016/j.fct.2013.04.030.

43.Sun X, Fang J, Fang N. Chishao (Paeoniae radix Rubra) alleviates intra-hepatic cholestasis by modulating NTCP in rats[J]. Front Pharmacol, 2024, 15: 1341651. DOI: 10.3389/fphar.2024.1341651.  

44.Chen L, Zhao X, Wei S, et al. Mechanism of paeoniflorin on ANIT-Induced cholestatic liver injury using integrated metabolomics and network pharmacology[J]. Front Pharmacol, 2021, 12: 737630. DOI: 10.3389/fphar.2021.737630.

45.许雪飞, 林迎瑶, 陈铭臻, 等. 水飞蓟宾对利福平和异烟肼致肝损伤中胆汁酸转运体Ntcp与Bsep的影响[J]. 解剖学研究, 2023, 45(1): 34-39. [Xu XF, Lin YY, Chen MZ, et al. The effect of silibinin on bile acid transporters Ntcp and Bsep in liver injury induced by rifampicin and isoniazid[J]. Anat Res, 2023, 45(1): 34-39.] DOI: 10.20021/j.cnki.1671-0770.2023.01.06.

46.Wlcek K, Koller F, Ferenci P, et al. Hepatocellular organic anion-transporting polypeptides (OATPs) and multidrug resistance-associated protein 2 (MRP2) are inhibited by silibinin[J]. Drug Metab Dispos, 2013, 41(8): 1522-1528. DOI: 10.1124/dmd.113. 051037.

47.Venkataramanan R, Ramachandran V, Komoroski BJ, et al. Milk thistle, a herbal supplement, decreases the activity of CYP3A4 and uridine diphosphoglucuronosyl transferase in human hepatocyte cultures[J]. Drug Metab Dispos, 2000, 28(11): 1270-1273. https://pubmed.ncbi.nlm.nih.gov/11038151/.

48.Mohamed MF, Tseng T, Frye RF. Inhibitory effects of commonly used herbal extracts on UGT1A1 enzyme activity[J]. Xenobiotica, 2010, 40(10): 663-669. DOI: 10.3109/00498254.2010.505669.

49.孙放, 伍照楚, 宋仕群, 等. 基于数据挖掘的近30年活血化瘀药治疗肺纤维化的用药规律[J]. 世界中医药, 2024, 19(2): 205-210. [Sun F, Wu ZC, Song SQ, et al. Medication regularity of blood-activating and stasis-removing medicinal for pulmonary fibrosis based on data mining in the past 30 years[J].World Chinese Medicine, 2024, 19(2): 205-210.] DOI: 10.3969/j.issn.1673-7202.2024.02.012.

50.许婧怡, 方虹凯, 李可盈,等. 淤胆型肝炎的病因病机及中医药防治研究进展[J]. 中国民间疗法, 2024, 32(14): 126-129. [Xu JY, Fang HK, Li KY, et al. Research progress on etiology, pathogenesis and prevention/treatment of cholestatic hepatitis with traditional Chinese medicine[J]. China's Naturopathy, 2024, 32(14): 126-129.] DOI: 10.19621/j.cnki.11-3555/r.2024.1433.

51.Zhao Y, He X, Ma X, et al. Paeoniflorin ameliorates cholestasis via regulating hepatic transporters and suppressing inflammation in ANIT-fed rats[J]. Biomed Pharmacother, 2017, 89: 61-68. DOI: 10.1016/j.biopha.2017.02.025.

52.Lari P, Abnous K, Imenshahidi M, et al. Evaluation of diazinon-induced hepatotoxicity and protective effects of crocin[J]. Toxicol Ind Health, 2015, 31(4): 367-376. DOI: 10.1177/0748233713475519.

53.Song D, Zhu P, Dong Y, et al. Mechanism of crocin I on ANIT-induced intrahepatic cholestasis by combined metabolomics and transcriptomics[J]. Front Pharmacol, 2022, 13: 1088750. DOI: 10.3389/fphar.2022.1088750.

54.Zhang XX, Cao YF, Wang LX, et al. Inhibitory effects of tanshinones towards the catalytic activity of UDP-glucuronosyltransferases (UGTs)[J]. Pharm Biol, 2017, 55(1): 1703-1709. DOI: 10.3109/13880209.2015.1045621.

55.Ma G, Zhang Y, Chen W, et al. Inhibition of human UGT1A1-mediated bilirubin glucuronidation by polyphenolic acids impact safety of popular salvianolic acid A/B-containing drugs and herbal products[J]. Mol Pharm, 2017, 14(9): 2952-2966. DOI: 10.1021/acs.molpharmaceut.7b00365.

56.王蓉, 王静, 宋复兴, 等. 丹参素通过调节Nrf2/HO-1和NF-κB/IκBα信号通路发挥抗大鼠肝纤维化的作用[J]. 中国药理学与毒理学杂志, 2019, 33(10): 918. [Wang R, Wang J, Song FX, et al. Danshensu exerts an antifibrotic effect in rat liver by regulating Nrf2/HO-1 and NF-κB/IκBα signaling pathways[J]. Chin J Pharmacol Toxicol, 2019, 33(10): 918.] DOI: 10.3867/j.issn.1000-3002.2019.10.001.

57.龚丽, 龚冰璐, 周啟秀, 等. 秦艽的化学成分及抗炎保肝活性研究[J]. 中草药, 2024, 55(10): 3238-3247. [Gong L, Gong BL, Zhou QX, et al. Chemical constituents of Gentiana macrophylla and their anti-inflammatory and hepatoprotective activities [J].Chinese Traditional and Herbal Drugs, 2024, 55(10): 3238-3247.] DOI: 10.7501/j.issn.0253-2670.2024.10.003.

58.Yang J, Sun L, Wang L, et al. Activation of Sirt1/FXR signaling pathway attenuates triptolide-induced hepatotoxicity in rats[J]. Front Pharmacol, 2017, 8: 260. DOI: 10.3389/fphar.2017.00260.

59.张志豪, 陈晓, 陈湘, 等. 黄秦艽对ANIT诱导的小鼠胆汁淤积性肝损伤保护研究[J]. 中南民族大学学报(自然科学版), 2023, 42(3): 306-312. [Zhang ZH, Chen X, Chen X, et al. Study on the protective effect of gentiana macrophylla on anit-induced cholestatic liver injury in mice[J]. Journal of South-Central University for Nationalities (Natural Science Edition) , 2023, 42(3): 306-312.] DOI: 10.20056/j.cnki.ZNMDZK.20230303.

60.Bessone F, Hillotte GL, Ahumada N, et al. UDCA for drug-induced liver disease: clinical and pathophysiological basis[J]. Semin Liver Dis, 2024, 44(1): 1-22. DOI: 10.1055/s-0044-1779520.

61.蔡媛媛, 程亚伟, 杨永和. 罗凌介辨证治疗黄疸七法[J]. 环球中医药, 2016, 9(6): 758-760. [Cai YY, Cheng YW, Yang YH. Luo Lingjie's seven diagnostic and therapeutic methods for jaundice based on syndrome differentiation[J]. Global Traditional Chinese Medicine, 2016, 9(6): 758-760.] DOI: 10.3969/j.issn.1674-1749.2016.06.037.

62.Gong L, Shen X, Huang N, et al. Research progress on hepatotoxicity mechanism of polygonum multiflorum and its main components[J]. Toxicon, 2024, 248: 108040. DOI: 10.1016/j.toxicon.2024.108040.

63.Teka T, Wang L, Gao J, et al. Polygonum multiflorum: Recent updates on newly isolated compounds, potential hepatotoxic compounds and their mechanisms[J]. J Ethnopharmacol, 2021, 271: 113864. DOI: 10.1016/j.jep.2021.113864.

64.汪祺, 王亚丹, 杨建波, 等. 基于代谢酶考察何首乌与制何首乌肝毒性差异[J]. 中国新药杂志, 2019, 28(15): 1858-1863. [Wang Q, Wang YD, Yang JB, et al. Investigation of the difference in hepatotoxicity between polygonum multiflorum thunb. and its prepared form based on metabolic enzymes[J]. Chinese Journal of New Drugs, 2019, 28(15): 1858-1863.] DOI: 10.3969/j.issn.1003-3734.2019.15.013.

65.唐志芳, 马国, 梅全喜. 何首乌炮制前后对胆红素肝细胞摄取及胆汁排泄的影响[J]. 时珍国医国药, 2018, 29(3): 595-598. [Tang ZF, Ma G, Mei QX. Effects of prepared and unprepared polygonum multiflorum thunb. on hepatocyte uptake and bile excretion of bilirubin[J]. Lishizhen Med Mater Med Res, 2018, 29(3): 595-598.] DOI: 10.3969/j.issn.1008-0805.2018.03.026.

66.Wang Q, Wen H, Ma S, et al. Polygonum multiflorum Thunb. induces hepatotoxicity in SD rats and hepatocyte spheroids by disrupting the metabolism of bilirubin and bile acid[J]. J Ethnopharmacol, 2022, 296: 115461. DOI: 10.1016/j.jep.2022. 115461.

67.Qu ZX, Li F, Ma CD, et al. Effects of gentiana scabra bage on expression of hepatic type I, III collagen proteins in paragonimus skrjabini rats with liver fibrosis[J]. Asian Pac J Trop Med, 2015, 8(1): 60-63. DOI: 10.1016/s1995-7645(14)60188-7.

68.Song D, Zhu P, Dong Y, et al. Mechanism of crocin I on ANIT-induced intrahepatic cholestasis by combined metabolomics and transcriptomics[J]. Front Pharmacol, 2023, 13: 1088750. DOI: 10.3389/fphar.2022.1088750.

69.Fan X, Lin L, Cui B, et al. Therapeutic potential of genipin in various acute liver injury, fulminant hepatitis, NAFLD and other non-cancer liver diseases: more friend than foe[J]. Pharmacol Res, 2020, 159: 104945. DOI: 10.1016/j.phrs.2020.104945.

70.Wei S, Ma X, Niu M, et al. Mechanism of paeoniflorin in the treatment of bile duct ligation-induced cholestatic liver injury using integrated metabolomics and network pharmacology[J]. Front Pharmacol, 2020, 11: 586806. DOI: 10.3389/fphar.2020.586806.

71.Ding L, Zhang B, Zhan C, et al. Danning tablets attenuates α-naphthylisothiocyanate-induced cholestasis by modulating the expression of transporters and metabolic enzymes[J]. BMC Complement Altern Med, 2014, 14(1): 249. DOI: 10.1186/1472-6882-14-249.

72.Huang W, Zhang J, Moore DD. A traditional herbal medicine enhances bilirubin clearance by activating the nuclear receptor CAR[J]. J Clin Invest, 2004, 113(1): 137-143. DOI: 10.1172/JCI18385.

73.龚雪, 余方曦. 复方益肝灵胶囊联合抗精神病药物治疗精神分裂症的疗效及肝保护作用[J]. 临床合理用药, 2024, 17(6): 53-56. [Gong X, Yu FX. Efficacy and hepatoprotective effects of compound Yiganling capsules combined with antipsychotic medications in the treatment of schizophrenia[J]. Clinical Rational Drug Use, 2024, 17(6): 53-56.] DOI: 10.15887/j.cnki.13-1389/r.2024.06.015.

74.陈明, 张鑫, 李光云, 等. 金胆片对大鼠肝内胆汁淤积模型的预防作用[J]. 中国医院药学杂志, 2013, 33(4): 294-296. [Chen M, Zhang X, Li GY, et al. Preventive effect of Jindan tablets on intrahepatic cholestasis model in rats[J]. Chinese Journal of Hospital Pharmacy, 2013, 33(4): 294-296.] DOI: 10.13286/j.cnki.chinhosppharmacyj.2013.04.011.

75.李晓玲. 复方茵丹汤对大鼠急性肝内胆汁淤积的干预作用[J]. 中国中西医结合消化杂志, 2014, 22(9): 497-500. [Li XL. The effect of compound Yindan decoction in rat model with acute intrahepatic cholestasis[J]. Chinese Journal of Integrated Traditional and Western Medicine on Digestion, 2014, 22(9): 497-500.] DOI: 10.3969/j.issn.1671-038X.2014.09.03.