Welcome to visit Zhongnan Medical Journal Press Series journal website!

Home Articles Vol 32,2023 No.5 Detail

Application of silk fibroin hydrogel in osteoarthritis

Published on May. 30, 2023Total Views: 1252 times Total Downloads: 421 times Download Mobile

Author: Wei CHEN Qian-Wen SUN Yan-Qi HAN Jun YE Hong-Liang WANG Yu-Ling LIU Yan-Fang YANG

Affiliation: Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China

Keywords: Osteoarthritis Silk fibroin protein Hydrogel Natural medicinal materials

DOI: 10.19960/j.issn.1005-0698.202305013

Reference: Wei CHEN, Qian-Wen SUN, Yan-Qi HAN, Jun YE, Hong-Liang WANG, Yu-Ling LIU, Yan-Fang YANG.Application of silk fibroin hydrogel in osteoarthritis[J].Yaowu Liuxingbingxue Zazhi,2023, 32(5):582-589.DOI: 10.19960/j.issn.1005-0698.202305013.[Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

With the increasing aging of the population, the number of patients with osteoarthritis is increasing year by year, posing a serious threat to human health. However, up to now, there is a lack of satisfactory clinical treatment for osteoarthritis. Silk protein is a natural polymer material with good biocompatibility, biodegradability and excellent mechanical properties, which is widely used in the field of bone tissue engineering. In recent years, with the continuous research on silk fibroin, more and more scholars have started to try to use silk fibroin hydrogel as a carrier for the treatment of osteoarthritis, and the results show that it has great potential for application in the treatment of osteoarthritis. This paper summarizes the research progress so far on the pathogenesis of osteoarthritis, commonly used drugs and the treatment of osteoarthritis with silk fibroin hydrogels, and lays the foundation for further exploration of the application of silk protein hydrogel in the treatment of osteoarthritis.

Full-text
Please download the PDF version to read the full text: download
References

1.Cornelis FMF, Monteagudo S, Guns LKA, et al. ANP32A regulates ATM expression and prevents oxida-tive stress in cartilage, brain, and bone[J]. Sci Transl Med, 2018, 10(458): eaar8426. DOI: 10.1126/scitranslmed.aar8426.

2.Thakur S, Riyaz B, Patil A, et al. Novel drug delivery systems for NSAIDs in management of rheumatoid arthritis: An overview[J]. Biomed Pharmacother, 2018, 106: 1011-1023. DOI: 10.1016/j.biopha.2018.07.027.

3.Chen Y, Wu T, Huang S, et al. Sustained release SDF-1alpha/TGF-beta1-loaded silk fibroin-porous gel-atin scaffold promotes cartilage repair[J]. ACS Appl Mater Interface, 2019, 11(16): 14608-14618. DOI: 10.1021/acsami.9b01532.

4.耿宗洁, 冀全博, 王岩. 骨关节炎不同治疗方法的研究进展[J]. 中国骨与关节杂志, 2021, 10(8): 636-640. [Geng ZJ, Ji QB, Wang Y. Research progress of different treatment methods of osteoarthritis[J]. Chinese Journal of Bone and Joint, 2021, 10(8): 636-640.] DOI: 10.3969/j.issn.2095-252X.2021.08.013.

5.Li Y, Liu Y, Guo Q. Silk fibroin hydrogel scaffolds incorporated with chitosan nanoparticles repair artic-ular cartilage defects by regulating TGF-beta1 and BMP-2[J]. Arthritis Res Ther, 2021, 23(1): 50. DOI: 10.1186/s13075-020-02382-x.

6.Cheng W, Ding Z, Zheng X, et al. Injectable hydrogel systems with multiple biophysical and biochemi-cal cues for bone regeneration[J]. Biomater Sci, 2020, 8(9): 2537-2548. DOI: 10.1039/d0bm00104j.

7.Chen D, Shen J, Zhao W, et al. Osteoarthritis: toward a comprehensive understanding of pathological mechanism[J]. Bone Res, 2017, 5: 16044. DOI: 10.1038/boneres.2016.44.

8.范重山, 孙明帅, 韩文朝. 促炎因子及基质金属蛋白酶在骨关节炎发病机制及相关治疗中的地位和作用[J]. 中国组织工程研究, 2021, 25(32): 5162-5170. [Fan CS, Sun MS, Han WC. Proinflammatory factors and matrix met-alloproteinases: status and roles in the pathogenesis of osteoarthritis[J]. Chinese Journal of Tissue Engineering Research, 2021, 25(32): 5162-5170.] DOI: 10.12307/2021.219.

9.Zhang W, Ouyang H, Dass CR, et al. Current research on pharmacologic and regenerative therapies for osteoarthritis[J]. Bone Res, 2016, 4: 15040. DOI: 10.1038/boneres.2015.40.

10.李鹏. 一种含硅酸钙淀粉水凝胶的制备及其在修复骨—软骨缺损中的应用[D]. 江苏苏州: 苏州大学, 2020.

11.李莹莹, 王昉, 刘其春, 等. 丝素蛋白及其复合材料的研究进展[J]. 材料工程, 2018, 46(8): 14-26. [Li YY, Wang F, Liu QC, et al. Research progress in silk fibroin and its composite materials[J]. Journal of Materials En-gineering, 2018, 46(8): 14-26.] DOI: 10.11868/j.issn.1001-4381.2017.001242.

12.Crivelli B, Perteghella S, Bari E, et al. Silk nanoparticles: from inert supports to bioactive natural carri-ers for drug delivery[J]. Soft Matter, 2018, 14(4): 546-557. DOI: 10.1039/c7sm01631j.

13.Ullah S, Chen X. Fabrication, applications and challenges of natural biomaterials in tissue engineer-ing[J]. Appl Mater Today, 2020, 20: 100656. DOI: 10.1016/j.apmt.2020.100656.

14.Echeverria C, Fernandes SN, Godinho MH, et al. Functional stimuli-responsive gels: hydrogels and mi-crogels[J]. Gels, 2018, 4(2): 54. DOI: 10.3390/gels4020054.

15.Zhao Y, Zhu ZS, Guan J, et al. Processing, mechanical properties and bio-applications of silk fibro-in-based high strength hydrogels[J]. Acta Biomater, 2021, 125: 57-71. DOI: 10.1016/j.actbio.2021.02.018.

16.Wang W, Zhang Y, Liu W. Bioinspired fabrication of high strength hydrogels from non-covalent inter-actions[J]. Prog Polym Sci, 2017, 71: 1-25. DOI: 10.1016/j.progpolymsci.2017.04.001.

17.Zheng HY, Zuo B. Functional silk fibroin hydrogels: preparation, properties and applications[J]. J Mater Chem B, 2021, 9(5): 1238-1258. DOI: 10.1039/d0tb02099k.

18.Wang HY, Zhang YQ. Processing silk hydrogel and its applications in biomedical materials[J]. Biotech-nol Prog, 2015, 31(3): 630-640. DOI: 10.1002/btpr.2058.

19.Mcgill M, Coburn JM, Partlow BP, et al. Molecular and macro-scale analysis of enzyme-crosslinked silk hydrogels for rational biomaterial design[J]. Acta Biomater, 2017, 63: 76-84. DOI: 10.1016/j.actbio.2017.09.020.

20.Whitty C, Pernstich C, Marris C, et al. Sustained delivery of the bone morphogenetic proteins BMP-2 and BMP-7 for cartilage repair and regeneration in osteoarthritis[J]. Osteoarthr Cartil Open, 2022, 4(1): 100240. DOI: 10.1016/j.ocarto.2022.100240.

21.Shao J, Ding Z, Li L, et al. Improved accumulation of TGF-β by photopolymerized chitosan/silk protein bio-hydrogel matrix to improve differentiations of mesenchymal stem cells in articular cartilage tissue regeneration - ScienceDirect[J]. J Photoch Photobio B, 2020, 203: 111744. DOI: 10.1016/j.jphotobiol.2019.111744.

22.Fukuda A, Kato K, Hasegawa M, et al. Enhanced repair of large osteochondral defects using a combi-nation of artificial cartilage and basic fibroblast growth factor[J]. Biomaterials, 2005, 26(20): 4301-4308. DOI: 10.1016/j.biomaterials.2004.11.007.

23.Hossain M, Adithan A, Alam M, et al. IGF-1 facilitates cartilage reconstruction by regulating PI3K/AKT, MAPK, and NF-kB signaling in rabbit osteoarthritis[J]. J Inflamm Res, 2021, 14: 3555-3568. DOI: 10.2147/JIR.S316756.

24.Nicol GD, Vasko MR. Unraveling the Story of NGF-mediated Sensitization of Nociceptive Sensory Neurons: ON or OFF the Trks?[J]. Mol Interv, 2007, 7(1): 26-41. DOI: 10.1124/mi.7.1.6.

25.Pelletier JP, Caron JP, Svan C, et al. In vivo suppression of early experimental osteoarthritis by inter-leukin-1 receptor antagonist using gene therapy[J]. Arthritis Rheum, 1997, 40(6): 1012-1019. DOI: 10.1002/art.1780400604.

26.Parkes M, Myant C, Dini D, et al. Tribology-optimised silk protein hydrogels for articular cartilage re-pair[J]. Tribol Int, 2015, 89: 9-18. DOI: 10.1016/j.triboint.2014.11.024.

27.Adali T, Kalkan R, Karimizarandi L. The chondrocyte cell proliferation of a chitosan/silk fibroin/egg shell membrane hydrogels - ScienceDirect[J]. Int J Biol Macromol, 2019, 124: 541-547. DOI: 10.1016/j.ijbiomac.2018.11.226.

28.Shin EY, Park JH, Shin ME, et al. Evaluation of chondrogenic differentiation ability of bone marrow mesenchymal stem cells in silk fibroin/gellan gum hydrogels using miR-30[J]. Macromol Res, 2019, 27(4): 369-376. DOI: 10.1007/s13233-019-7048-x.

29.Zhang W, Zhang Y, Zhang A, et al. Enzymatically crosslinked silk-nanosilicate reinforced hydrogel with dual-lineage bioactivity for osteochondral tissue engineering[J]. Mater Sci Eng C Mater Biol Appl, 2021, 127: 112215. DOI: 10.1016/j.msec.2021.112215.

30.Ziadlou R, Rotman S, Teuschl A, et al. Optimization of hyaluronic acid-tyramine/silk-fibroin composite hydrogels for cartilage tissue engineering and delivery of anti-inflammatory and anabolic drugs[J]. Mater Sci Eng C Mater Biol Appl, 2021, 120: 111701. DOI: 10.1016/j.msec.2020.111701.

31.Fathi-Achachelouei M, Keskin D, Bat E, et al. Dual growth factor delivery using PLGA nanoparticles in silk fibroin/PEGDMA hydrogels for articular cartilage tissue engineering[J]. J Biomed Mater Res B Appl Biomater, 2020, 108(5): 2041-2062. DOI: 10.1002/jbm.b.34544.

32.Zheng D, Chen T, Han L, et al. Synergetic integrations of bone marrow stem cells and transforming growth factor-beta1 loaded chitosan nanoparticles blended silk fibroin injectable hydrogel to en-hance repair and regeneration potential in articular cartilage tissue[J]. Int Wound J, 2022, 19(5): 1023 - 1038. DOI: 10.1111/iwj.13699.

Popular papers
Last 6 months