Objective To establish the fingerprints and predict the quality markers of Sanqi Shenfeng oral liquid based on fingerprint and network pharmacology.
Methods The fingerprints of 12 batches of Sanqi Shenfeng oral liquid were established by using HPLC, and their peaks were identified and assigned. The candidate components were selected by multiple statistical analysis methods such as similarity evaluation, hierarchical cluster analysis, principal component analysis and orthogonal partial least squares discrimination analysis (OPLS-DA). The “component-target-pathway” network diagram was constructed by network pharmacology, and the quality markers of Sanqi Shenfeng oral liquid were predicted.
Results The 13 common peaks were identified from the established fingerprint. Compared with the reference material, eight common peaks were identified as 3 (tetrahydroxystilbene glucoside), 5 (sodium benzoate), 6 (lobetyolin), 7 (notoginsenoside R1), 9 (ginsenoside Rg1), 10 (ginsenoside Re), 12 (10-hydroxy-2-decenoic acid), 13 (ginsenoside Rb1). The similarity of 12 batches of Sanqi Shenfeng oral liquid samples was higher than 0.997, and 12 batches of samples were grouped into two categories. OPLS-DA analysis showed that peaks 2, 3, 4, 7, 9, 10, 11, 12 were the main signature components affecting the quality of Sanqi Shenfeng oral liquid. Network pharmacology predicted that lobetyolin, notoginsenoside R1, ginsenoside Rg1, ginsenoside Rb1, ginsenoside Re and 10-hydroxy-2-decenoic acid were potential Q-markers of Sanqi Shenfeng oral liquid. The traditional functions are performed through STAT3/AKT1-Drp1, HIF-1 and PI3K-AKT signaling pathway.
Conclusion The established fingerprint has good reproducibility, stability and feasibility. The six components have great influence on the quality of Sanqi Shenfeng oral liquid, which are transferable and traceable, and are closely related to the efficacy. They can be used as potential quality markers to provide a scientific basis for the quality control and evaluation of Sanqi Shenfeng oral liquid.
1.国家食品药品监督管理总局国家药品标准. 三七参蜂口服液[S]. 2014.
2.张铁军, 白钢, 刘昌孝, 等. 中药质量标志物的概念、核心理论与研究方法[J]. 药学学报, 2019, 54(2): 187-196. [Zhang TJ, Bai G, Liu CX, et al. The concept, core theory and research methods of Chinese medicine quality markers[J]. Acta Pharmaceutica Sinica, 2019, 54(2): 187-196.] DOI: 10.16438/j.0513-4870.2018-0912.
3.张涛, 张青, 易海燕, 等. 基于指纹图谱结合化学计量法对何首乌不同炮制品多指标成分分析[J]. 中草药, 2022, 53(15): 4653-4662. [Zhang T, Zhang Q, Yi HY, et al. Analysis on multi-index components of Polygoni Multiflori Radix and its processed products based on fingerprints and chemometrics[J]. Chinese Traditional and Herbal Drugs, 2022, 53(15): 4653-4662.] DOI: 10.7501/j.issn.0253-2670.2022.15.008.
4.孙立丽, 王萌, 任晓亮. 化学模式识别方法在中药质量控制研究中的应用进展[J]. 中草药, 2017, 48(20): 4339-4345. [Sun LL, Wang M, Ren XL. Application progress on chemical pattern recognition in quality control of Chinese materia medica[J]. Chinese Traditional and Herbal Drugs, 2017, 48(20): 4339-4345.] DOI: 10.7501/j.issn.0253-2670.2017.20.031.
5.许金国, 夏金鑫, 梅茜, 等. 经典名方当归四逆汤指纹图谱及功效关联物质预测分析[J]. 中草药, 2021, 52(15): 4507-4518. [Xu JG, Xia JX, Mei Q, et al. Fingerprints of classical prescription Danggui Sini Decoction and predictive analysis of its efficacy related substance[J]. Chinese Traditional and Herbal Drugs, 2021, 52(15): 4507-4518.] DOI: 10.7501/j.issn.0253-2670.2021.15.008.
6.刘天亮, 杨林林, 董诚明, 等. 基于化学模式识别的不同产地金银花HPLC指纹图谱研究[J]. 中草药, 2022, 53(15): 4833-4843. [Liu TL, Yang LL, Dong CM, et al. Study on HPLC fingerprint of Lonicera Japonica Flos from different areas based on chemical pattern recognition[J]. Chinese Traditional and Herbal Drugs, 2022, 53(15): 4833-4843.] DOI: 10.7501/j.issn.0253-2670. 2022.15.027.
7.邵淑贤, 金珊, 叶乃兴. 基于电子鼻与HS-SPME-GC-MS技术对不同产地黄观音乌龙茶香气的差异分析[J]. 食品科学, 2023, 44(4): 232-239. [Shao SX, Jin S, Ye NX. Differential analysis of aroma components of Huangguanyin Oolong tea from different geographical origins using electronic nose and headspace solid-phase microextraction-gas chromatography-mass spectrometry[J]. Food Science, 2023, 44(4): 232-239.] DOI: 10.7506/spkx1002-6630-20220413-160.
8.帅丽霞, 陈旺, 袁袁, 等. 基于指纹图谱和网络药理学对经典名方二冬汤质量标志物(Q-Marker)预测分析 [J]. 中草药, 2022, 53(18): 5682-5691. [Shuai LX, Chen W, Yuan Y, et al. Predictive analysis of quality markers of Erdong decoction based on fingerprint and network pharmacology[J]. Chinese Traditional and Herbal Drugs, 2022, 53(18): 5682-5691.] DOI: 10.7501/j.issn.0253- 2670.2022.18.011.
9.温捷, 薛蓉, 季德, 等. 指纹图谱结合网络药理学的瓜蒌饮片质量标志物预测分析[J]. 中草药, 2021, 52(9): 2687-2695. [Wen J, Xue R, Ji D, et al. Predictive analysis of quality markers of Trichosanthis Fructus decoction pieces based on fingerprint and network pharmacology[J]. Chinese Traditional and Herbal Drugs, 2021, 52(9): 2687-2695.] DOI: 10.7501/j.issn.0253-2670.2021.09.019.
10.涂慧, 陈林, 周代俊, 等. 基于指纹图谱和网络药理学对经典名方五味消毒饮质量标志物的预测分析[J]. 中国药师, 2024, 27(4): 557-569. [Tu H, Chen L, Zhou DJ, et al. Quality marker prediction analysis of Wuwei disinfection decoction based on fingerprint and network pharmacology[J]. China Pharmacist, 2024, 27(4): 557-569.] DOI: 10.12173/j.issn.1008-049X.202401123.
11.田永强, 邹戬, 张义生, 等. 基于网络药理学和指纹图谱的温经止痛合剂质量标准研究[J]. 中国药师, 2023, 26(10): 22-34. [Tian YQ, Zou J, Zhang YS, et al. Quality standards of Wenjing Zhitong mixture based on network pharmacology and fingerprint[J]. China Pharmacist, 2023, 26(10): 22-34.] DOI: 10.12173/j.issn.1008-049X.202211076.
12.石礼平, 张国壮, 刘丛盛, 等. 三七化学成分和药理作用研究概况及质量标志物的预测[J]. 中国中药杂志, 2023, 48(8): 2059-2067. [Shi LP, Zhang GZ, Liu CS, et al. Research summary of chemical constituents and pharmacological effects of Panax notoginseng and predictive analysis on its Q-markers[J]. China Journal of Chinese Materia Medica, 2023, 48(8): 2059-2067.] DOI: 10.19540/j.cnki.cjcmm.20230213.201.
13.刘耀晨, 张铁军, 郭海彪, 等. 三七的研究进展及其质量标志物预测分析[J]. 中草药, 2021, 52(9): 2733-2745. [Liu YC, Zhang TJ, Guo HB, et al. Research progress on Notoginseng Radix et Rhizoma and predictive analysis on its Q-Marker[J]. Chinese Traditional and Herbal Drugs, 2021, 52(9): 2733-2745.] DOI: 10.7501/j.issn.0253-2670.2021.09.023.
14.边惠琴, 武晓玉, 夏鹏飞, 等. 党参的研究进展及质量标志物的预测分析[J]. 华西药学杂志, 2022, 37(3): 337-344. [Bian HQ, Wu XY, Xia PF, et al. Research progress of Codonopsis Radix and predictive analysis on quality markers[J]. West China Journal of Pharmaceutical Sciences, 2022, 37(3): 337-344.] DOI: 10.13375/j.cnki.wcjps.2022.03.023.
15.孙奕良, 李海燕, 马志敏, 等. 蜂王浆在提高人体免疫力及解决围绝经期女性症状方面的研究进展 [J]. 中国农学通报, 2022, 38(35): 119-124. [Sun YL, Li HY, Ma ZM, et al. Research progress of royal jelly in improving human immunity and symptomatic treatment of perimenopausal women[J]. Chinese Agricultural Science Bulletin, 2022, 38(35): 119-124.] DOI: 10.11924/j.issn.1000-6850.casb2022-0464.
16.王卓, 钟凌云, 解杨, 等. 基于“生熟异用”何首乌的研究进展及其质量标志物(Q-Marker)的预测分析[J]. 中草药, 2022, 53(3): 882-897. [Wang Z, Zhong LY, Xie Y, et al. Research progress on Polygoni Multiflori Radix based on "raw and cooked with different uses" and prediction analysis on quality marker (Q-Marker)[J]. Chinese Traditional and Herbal Drugs, 2022, 53(3): 882-897.] DOI: 10.7501/j.issn.0253-2670.2022.03.029.
17.宋艳梅, 张启立, 崔治家, 等. 枸杞子化学成分和药理作用的研究进展及质量标志物的预测分析[J]. 华西药学杂志, 2022, 37(2): 206-213. [Song YM, Zhang QL, Cui ZJ, et al. Research progress on chemical constituents and pharmacological effects of Lycii fructus and its quality marker prediction and analysis[J]. West China Journal of Pharmaceutical Sciences, 2022, 37(2): 206-213.] DOI: 10.13375/j.cnki.wcjps.2022.02.021.
18.王茹, 王培利, 王承龙. 基于网络药理学研究人参调节能量代谢的作用机制[J]. 中华中医药学刊, 2021, 39(10): 90-93. [Wang R, Wang PL, Wang CL. Mechanism of Renshen (Ginseng Radix Et Rhizoma) on energy metabolism based on network pharmacology[J]. Chinese Archives of Traditional Chinese Medicine, 2021, 39(10): 90-93.] DOI: 10.13193/j.issn.1673-7717.2021.10.020.
19.Zhou K, Chen J, Wu J, et al. Atractylenolide III ameliorates cerebral ischemic injury and neuroinflammation associated with inhibiting JAK2/STAT3/Drp1-dependent mitochondrial fission in microglia[J]. Phytomedicine, 2019, 59: 152922. DOI: 10.1016/j.phymed.2019.152922.
20.王苹苹, 孔繁平, 陈学群, 等. 低氧细胞应激的HIF-1信号通路[J].浙江大学学报(医学版), 2011, 40(5): 560-566. [Wang PP, Kong FP, Chen XQ, et al. HIF-1 signal pathway in cellular response to hypoxia[J]. Journal of Zhejiang University (Medical Sciences), 2011, 40(5): 560-566.] DOI: 10.3785/j.issn.1008-9292.2011.05.017.
21.闫晗, 杨吉春, 迟毓婧, 等. PI3K-Akt信号转导通路对脂代谢的调控作用[J]. 生理科学进展, 2021, 52(6): 425-430. [Yan H, Yang JC, Chi YJ, et al. The regulation of PI3K-Akt signal transduction pathway on lipid metabolism[J]. Progress in Physiological Sciences, 2021, 52(6): 425-430.] DOI: 10.3969/j.issn.0559-7765.2021.06.005.
22.Xie Y, Shi X, Sheng K, et al. PI3K/Akt signaling transduction pathway, erythropoiesis and glycolysis in hypoxia[J]. Mol Med Rep, 2019, 19(2): 783-791. DOI: 10.3892/mmr.2018.9713.
23.Yu Y, Zhao Y, Teng F, et al. Berberine improves cognitive deficiency and muscular dysfunction via activation of the AMPK/SIRT1/PGC-1a pathway in skeletal muscle from naturally aging rats[J]. J Nutr Health Aging, 2018, 22(6): 710-717. DOI: 10.1007/s12603-018-1015-7.
24.Jia D, Hou L, Lyu Y, et al. Postinfarction exercise training alleviates cardiac dysfunction and adverse remodeling via mitochondrial biogenesis and SIRT1/PGC-1α/PI3K/Akt signaling[J]. J Cell Physiol, 2019, 234(12): 23705-23718. DOI: 10.1002/jcp.28939.
25.符庆瑛, 高钰琪. 蛋白激酶AMPK的研究进展[J]. 生命科学, 2005, 17(2): 147-152. [Fu QY, Gao YQ. Advances in the studies of AMP-activated protein kinase[J]. Chinese Bulletin of Life Sciences, 2005, 17(2): 147-152.] DOI: 10.3969/j.issn.1004-0374.2005.02.009.