Objective To investigate the attainment rate of pharmacokinetic/pharmacodynamic (PK/PD) targets and trough concentration (Cmin) of piperacillin-tazobactam (TZP) in patients with severe traumatic brain injury (STBI), analyze influencing factors, and develop a predictive model for clinical application.
Methods A retrospective analysis was conducted on clinical data from STBI patients treated with TZP and undergoing therapeutic drug monitoring in the intensive care unit of our hospital between January 2021 and March 2025. PK/PD target attainment was evaluated. Patients were stratified by creatinine clearance (Ccr) into augmented renal clearance (ARC) group (Ccr≥130.0 mL·min-1) and non-ARC group (Ccr<130.0 mL·min-1). Based on a PK/PD target Cmin>16 μg·mL-1, patients were categorized into the target-attainment group (Cmin>16 μg·mL-1) and the non-attainment group (Cmin≤16 μg·mL-1). Multivariate Logistic regression was used to identify factors associated with subtherapeutic TZP Cmin in STBI patients. A receiver operating characteristic (ROC) curve was plotted and a predictive model was constructed. Monte Carlo simulation was performed to calculate the probability of target attainment (PTA) and cumulative fraction of response (CFR) under different dosing regimens and infusion durations.
Results A total of 96 STBI patients were included, among whom 28 had pulmonary infections and 26 had urinary tract infections; Gram-negative bacteria were the predominant pathogens. The overall PK/PD target attainment rate in STBI patients was 32.29% (31/96), 31 patients were in the target-attainment group and 65 in the non-attainment group. There were 33 patients in the ARC group and 63 in the non-ARC group. Cmin was significantly higher in patients with pulmonary or urinary tract infections than in those without infections (P<0.001). Patients with serum creatinine (SCr) ≥85 μmol·L-1 had higher Cmin levels than those with SCr <85 μmol·L-1 (P<0.001). Cmin was higher in the non-ARC group than in the ARC group (P<0.001). Ccr was an independent factor influencing subtherapeutic TZP Cmin [OR=4.268, 95%CI (2.457, 5.864), P<0.001]. The optimal cut-off value of Ccr was 71.600 mL·min-1, which achieved the best predictive efficacy. When the minimum inhibitory concentration was ≤16 μg·mL-1, there were appropriate treatment regimens and infusion durations to meet the requirement of PTA >90%. For empirical treatment of STBI patients and STBI patients with ARC, only the 4.5 g (q6 h) administration regimen with an infusion time of 4 h achieved a cumulative response fraction (CFR) of over 90%. The incidence of adverse drug reactions in the 96 patients was 6.25% (6/96).
Conclusion The PK/PD target attainment rate of TZP in STBI patients is relatively low. Ccr is an important factor influencing TZP Cmin. The predictive model based on Ccr demonstrates considerable clinical value. Individualized precision therapy can be optimized in clinical practice by adjusting infusion strategies and implementing therapeutic drug monitoring.
1.霍军丽, 王毓, 邓琪, 等. 神经外科患者术后下呼吸道感染病原学及肺炎克雷伯菌耐药基因检测[J]. 中华医院感染学杂志, 2023, 33(7): 1066-1070. [Huo JL, Wang Y, Deng Q, et al. Etiological characteristics of postoperative lower respiratory tract infections in patients of neurosurgery department and drug resistance genes in Klebsiella pneumoniae[J]. Chinese Journal of Nosocomiology, 2023, 33(7): 1066-1070.] DOI: 10.11816/cn.ni.2023-221021.
2.中国医师协会神经外科分会神经重症专家委员会, 中国神经外科重症管理协作组. 神经重症患者中枢神经系统感染多黏菌素局部应用的中国专家共识(2024年版)[J]. 中华神经医学杂志, 2024, 23(2): 109-118. [Neurological intensive care expert committee of neurosurgical branch of Chinese medical association, China neurosurgical intensive care management collaborative group. Consensus of Chinese experts on topical application of polymyxin in severe central nervous system infections (2024)[J]. Chinese Journal of Neuromedicine, 2024, 23(2): 109-118.] DOI: 10.3760/cma.j.cn115354-20240124-00069.
3.Rando E, Salvati F, Sangiorgi F, et al. Association of piperacillin/tazobactam MIC and mortality in a cohort of ceftriaxone-resistant Escherichia coli bloodstream infections treated with piperacillin/tazobactam and carbapenems: a multicentric propensity score-weighted observational cohort study[J]. J Antimicrob Chemother, 2024, 79(2): 453-461. DOI: 10.1093/jac/dkad404.
4.Grewal A, Thabet P, Dubinsky S, et al. Antimicrobial pharmacokinetics and dosing in critically ill adults receiving prolonged intermittent renal replacement therapy: a systematic review[J]. Pharmacotherapy, 2023, 43(11): 1206-1220. DOI: 10.1002/phar.2861.
5.Hagel S, Bach F, Brenner T, et al. Effect of therapeutic drug monitoring-based dose optimization of piperacillin/tazobactam on sepsis-related organ dysfunction in patients with sepsis: a randomized controlled trial[J]. Intensive Care Med, 2022, 48(3): 311-321. DOI: 10.1007/s00134-021-06609-6.
6.Areskog Lejbman I, Torisson G, Resman F, et al. Beta-lactam antibiotic concentrations in critically ill patients with standard and adjusted dosages: a prospective observational study[J]. Acta Anaesthesiol Scand, 2024, 68(4): 530-537. DOI: 10.1111/aas.14382.
7.Stasek J, Keller F, Koci V, et al. Update on therapeutic drug monitoring of beta-lactam antibiotics in critically ill patients-a narrative review[J]. Antibiotics (Basel), 2023, 12(3): 568-577. DOI: 10.3390/antibiotics12030568.
8.陈沈珏, 李昕, 伍敏益, 等. 肾功能亢进患者美罗培南药动学/药效学达标情况及谷浓度影响因素[J]. 医药导报, 2024, 43(1): 122-126. [Chen SY, Li X, Wu MY, et al. Analysis of pharmacokinetics/pharmacodynamics compliance and influencing factors of meropenem concentration in patients with augmented renal clearance[J]. Herald of Medicine, 2024, 43(1): 122-126.] DOI: 10.3870/j.issn.1004-0781.2024.01.019.
9.邓阳, 徐兵, 李昕, 等. 美罗培南治疗药物监测的HPLC方法探索及其临床采样流程建立[J]. 中国医院药学杂志, 2020, 40(12): 1334-1338. [Deng Y, Xu B, Li X, et al. Exploration of HPLC method for therapeutic drug monitoring of meropenem and its establishment of clinical sampling procedure[J]. Chinese Journal of Hospital Pharmacy, 2020, 40(12): 1334-1338.] DOI: 10.13286/j.1001-5213.2020.12.10.
10.Dash D, Rai S. Clinical implications of revised piperacillin-tazobactam breakpoints in CLSI M-100 S32[J]. Indian J Med Microbiol, 2023, 42(1): 108-109. DOI: 10.1016/j.ijmmb.2022. 09.013.
11.Drusano GL. Pharmacokinetics and pharmacodynamics of antimicrobials[J]. Clin Infect Dis, 2007, 45(Suppl 1): S89-S95. DOI: 10.1086/518137.
12.Wang H, Zhang B, Ni Y, et al. Pharmacodynamic target attainment of seven antimicrobials against Gram-negative bacteria collected from China in 2003 and 2004[J]. Int J Antimicrob Agents, 2007, 30(5): 452-457. DOI: 10.1016/j.ijantimicag.2007.06.005.
13.叶龙强, 蔡挺. 应用蒙特卡罗模拟优化哌拉西林/他唑巴坦的给药方案[J]. 中国临床药理学与治疗学, 2010, 15(8): 901-905. [Ye LQ, Cai T. Optimizing the dosing regimen of piperacillin/tazobactam using Monte Carlo simulation[J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2010, 15(8): 901-905.] https://kns.cnki.net/kcms2/article/abstract?v=z8lpvlhA63FYNlFZ_UyZdq0mk4bGTrosgoA0lx6iwehtf0_ZQJp0moq1cT7Cq0JtyFs1QXw0XWpT8MdauSvhTNZ_tHhjPEAF-jmch0vJj9XobKoPjd9FEjlY7wrw0kYTdDmIr-RH6eQkLNbNKdQO-xsJx2gVb9Ej0a3xpbMg0PhcOgLgwn MPOg==&uniplatform=NZKPT&language=CHS.
14.Zazo H, Aguazul Y, Lanao JM. Dosing evaluation of ceftazidime-avibactam in intensive care unit patients based on pharmacokinetic/pharmacodynamic (PK/PD) modeling and simulation[J]. Antibiotics (Basel), 2024, 13(9): 861-872. DOI: 10.3390/antibiotics13090861.
15.Egea A, Dupuis C, de Montmollin E, et al. Augmented renal clearance in the ICU: estimation, incidence, risk factors and consequences-a retrospective observational study[J]. Ann Intensive Care, 2022, 12(1): 88-97. DOI: 10.1186/s13613-022-01058-w.
16.Monteiro E, Fraga Pereira M, Barroso I, et al. Creatinine clearance in acute brain injury: a comparison of methods[J]. Neurocritical Care, 2023, 39(2): 514-521. DOI: 10.1007/s12028-023-01714-4.
17.陈沈珏, 李美云, 胡杰, 等. 重症患者哌拉西林他唑巴坦血药浓度达标情况及影响因素分析[J]. 中国医院药学杂志, 2024, 44(8): 925-928, 934. [Chen SY, Li MY, Hu J, et al. Clinical characteristics and influencing factors of piperacillin tazobactam concentration in critically ill patients[J]. Chinese Journal of Hospital Pharmacy, 2024, 44(8): 925-928, 934.] DOI: 10.13286/j.1001-5213.2024.08.10.
18.Wang X, Mu J, Ma K, et al. Challenges of serum creatinine level in GFR assessment and drug dosing decisions in kidney injury[J]. Adv Pharm Bull, 2024, 14(4): 745-758. DOI: 10.34172/apb.42345.
19.Udy AA, Jarrett P, Lassig-Smith M, et al. Augmented renal clearance in traumatic brain injury: a single-center observational study of atrial natriuretic peptide, cardiac output, and creatinine clearance[J]. J Neurotrauma, 2017, 34(1): 137-144. DOI: 10.1089/neu.2015.4328.
20.Selig DJ, DeLuca JP, Chung KK, et al. Pharmacokinetics of piperacillin and tazobactam in critically Ill patients treated with continuous kidney replacement therapy: a mini-review and population pharmacokinetic analysis[J]. J Clin Pharm Ther, 2022, 47(8): 1091-1102. DOI: 10.1111/jcpt.13657.
21.Chi R, Perkins AJ, Khalifeh Y, et al. Serum albumin level at intensive care unit admission and delirium duration and severity in critically ill adults[J]. Am J Crit Care, 2024, 33(6): 412-420. DOI: 10.4037/ajcc2024650.
22.Wang C, Niu X, Bao S, et al. Distribution patterns and antibiotic resistance profiles of bacterial pathogens among patients with wound infections in the Jiaxing region from 2021 to 2023[J]. Infect Drug Resist, 2024, 17(1): 2883-2896. DOI: 10.2147/IDR.S470401.
23.El-Haffaf I, Guilhaumou R, Velly L, et al. Impact of piperacillin unbound fraction variability on dosing recommendations in critically ill patients[J]. Br J Clin Pharmacol, 2023, 89(4): 1502-1508. DOI: 10.1111/bcp.15619.
24.Wulkersdorfer B, Bergmann F, Amann L, et al. Effect of albumin substitution on pharmacokinetics of piperacillin/tazobactam in patients with severe burn injury admitted to the ICU[J]. J Antimicrob Chemother, 2024, 79(2): 262-270. DOI: 10.1093/jac/dkad368.
25.Bakdach D, Elajez R, Bakdach AR, et al. Pharmacokinetics, pharmacodynamics, and dosing considerations of novel β-lactams and β-lactam/β-lactamase inhibitors in critically ill adult patients: focus on obesity, augmented renal clearance, renal replacement therapies, and extracorporeal membrane oxygenation[J]. J Clin Med, 2022, 11(23): 6898-6907. DOI: 10.3390/jcm11236898.
26.Vincze I, Czermann R, Nagy Z, et al. Assessment of antibiotic pharmacokinetics, molecular biomarkers and clinical status in critically ill adults diagnosed with community-acquired pneumonia and receiving intravenous piperacillin/tazobactam and hydrocortisone over the first five days of intensive care: an observational study (STROBE Compliant)[J]. J Clin Med, 2022, 11(14): 4140-4151. DOI: 10.3390/jcm11144140.
27.Weinelt FA, Stegemann MS, Theloe A, et al. Evaluation of a meropenem and piperacillin monitoring program in intensive care unit patients calls for the regular assessment of empirical targets and easy-to-use dosing decision tools[J]. Antibiotics, 2022, 11(6): 758-766. DOI: 10.3390/antibiotics11060758.
28.李文静, 孙炜, 方和, 等. 颅脑损伤术后颅内感染脑脊液标本病原菌分布特点及耐药性分析[J]. 中国病原生物学杂志, 2024, 19(10): 1211-1214. [Li WJ, Sun W, Fang H, et al. Distribution characteristics and drug resistance analysis of pathogenic bacteria in cerebrospinal fluid specimens of patients with postoperative intracranial infection after traumatic brain injury[J]. Journal of Pathogen Biology, 2024, 19(10): 1211-1214.] DOI: 10.13350/j.cjpb.241019.
29.Reeder JA, Creech CB, Nation RL, et al. Utilizing an opportunistic clinical study and population-based pharmacokinetic models to identify rational empiric dosing regimens for piperacillin-tazobactam in critically ill patients[J]. J Clin Pharmacol, 2025, 65(4): 452-465. DOI: 10.1002/jcph.6161.
30.Khan AB, Abdul-Aziz MH, Hindle L, et al. Continuous versus intermittent bolus dosing of beta-lactam antibiotics in a South African multi-disciplinary intensive care unit: a randomized controlled trial[J]. J Infect, 2025, 90(5): 187-198. DOI: 10.1016/j.jinf.2025.106487.
31.Smekal AK, Swartling M, Furebring M, et al. Short, extended and continuous infusion of β-lactams: predicted impact on target attainment and risk for toxicity in an ICU patient cohort[J]. J Antimicrob Chemother, 2025, 80(3): 876-884. DOI: 10.1093/jac/dkaf013.
32.Caubergs V, Van den Broucke E, Mertens B, et al. Evaluation and implementation of optimized antimicrobial dosing strategies in obese and underweight patients[J]. Infection, 2024, 52(6): 2297-2314. DOI: 10.1007/s15010-024-02279-w.