Welcome to visit Zhongnan Medical Journal Press Series journal website!

Home Articles Vol 34,2025 No.12 Detail

Guide on Methodological Standards in Pharmacoepidemiology (2nd edition) and their series interpretation (12): applications of negative control methods and case analysis

Published on Dec. 26, 2025Total Views: 19 times Total Downloads: 4 times Download Mobile

Author: JIANG Baoyuan 1 ZHAN Siyan 2, 3, 4 SUN Feng 2, 3, 5, 6, 7 YANG Zhirong 8, 9 WU Shanshan 1

Affiliation: 1. Department of Clinical Epidemiology and Evidence-based Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China 2. Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China 3. Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing 100191, China 4. Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing 100191, China 5. Department of Ophthalmology, Peking University Third Hospital, Beijing 100191, China 6. School of Translational Chinese Medicine, Xinjiang Medical Univeristy, Urumqi 830017, China 7. School of Public Health, Shihezi Univerisity, Shihezi 832000, Xinjiang Uygur Autonomous Region, China 8. Department of Computational Biology and Medical Big Data, Faculty of Computer Science and Control Engineering, Shenzhen University of Advanced Technology, Shenzhen 518107, Guangdong Province, China 9. Center for AI in Medicine, Artificial Intelligence Research Institute, Shenzhen University of Advanced Technology, Shenzhen 518107, Guangdong Province, China

Keywords: Pharmacoepidemiology Methodology Guidelines Negative controls Unmeasured confounding

DOI: 10.12173/j.issn.1005-0698.202511138

Reference: JIANG Baoyuan, ZHAN Siyan, SUN Feng, YANG Zhirong, WU Shanshan. Guide on Methodological Standards in Pharmacoepidemiology (2nd edition) and their series interpretation (11): introduction and examples of pharmacovigilance impact research[J]. Yaowu Liuxingbingxue Zazhi, 2025, 34(12): 1353-1362. DOI: 10.12173/j.issn.1005-0698.202511138.[Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

Unmeasured confounding is a common challenge in pharmacoepidemiological studies. Negative controls can be used to detect potential unmeasured confounding and thereby validate the reliability of study. Based on the Guidelines for Pharmacoepidemiological Research Methodology (2nd edition), this study systematically interprets the application of the negative control methods and related case studies. First, the definition and main types of negative controls are introduced, including negative exposure control, negative period control, and negative outcome control, clarifying their basic concepts and applicable scenarios. Second, it elaborates the primary purpose of this method, which is to identify and adjust for unmeasured confounding. Then, the implementation steps and statistical analysis methods are outlined, covering selection criteria during the study design phase and bias detection strategies during the statistical analysis phase. Finally, through detailed analysis of four types of typical cases, the practical application value of negative controls is demonstrated in areas such as verifying drug safety, evaluating effectiveness, and identifying and adjusting for unmeasured confounding. The study emphasizes that while negative controls may not eliminate bias, they serve as a supplementary analytical tool, when combined with other epidemiological methods, can effectively enhance the quality of causal inference in observational studies. This research provides methodological references for the appropriate selection and application of negative controls in pharmacoepidemiological practice, thereby contributing to the advancement of high-quality researches.

Full-text
Please download the PDF version to read the full text: download
References

1.Sabaté M, Montané E. Pharmacoepidemiology: an overview[J]. J Clin Med, 2023, 12(22): 7033. DOI: 10.3390/jcm12227033.

2.Montastruc JL, Benevent J, Montastruc F, et al. What is pharmacoepidemiology? Definition, methods, interest and clinical applications[J]. Therapie, 2019, 74(2): 169-174. DOI: 10.1016/j.therap.2018.08.001.

3.中国药学会药物流行病学专业委员会. 中国药物流行病学研究方法学指南(T/CPHARMA 002-2019)[J]. 中华流行病学杂志, 2019, 40(10): 1180-1185. DOI: 10.3760/cma.j.issn.0254-6450.2019.10.002.

4.吴昀效, 颜济南, 聂晓璐, 等. 《中国药物流行病学研究方法学指南(第2版)》及其系列解读(1): 概述[J]. 药物流行病学杂志, 2025, 34(1): 2-11. [Wu YX, Yan JN, Nie XL, et al. Guide on Methodological Standards in Pharmacoepidemiology in China (2nd edition) and their series interpretation (1): an overview[J]. Chinese Journal of Pharmacoepidemiology, 2025, 34(1): 2-11.] DOI: 10.12173/j.issn.1004-5511.202412131.

5.Lipsitch M, Tchetgen Tchetgen E, Cohen T. Negative controls: a tool for detecting confounding and bias in observational studies[J]. Epidemiology (Cambridge, Mass), 2010, 21(3): 383-388. DOI: 10.1097/EDE.0b013e3181d61eeb.

6.Cohen JM, Hernández-Díaz S, Bateman BT, et al. Placental complications associated with psychostimulant use in pregnancy[J]. Obstet Gynecol, 2017, 130(6): 1192-1201. DOI: 10.1097/aog.0000000000002362.

7.Groenwold RH. Falsification end points for observational studies[J]. JAMA, 2013, 309(17): 1769-1770. DOI: 10.1001/jama.2013.3089.

8.Groenwold RH, Hoes AW, Hak E. Impact of influenza vaccination on mortality risk among the elderly[J]. The Eur Respir J, 2009, 34(1): 56-62. DOI: 10.1183/09031936.00190008.

9.Jackson LA, Jackson ML, Nelson JC, et al. Evidence of bias in estimates of influenza vaccine effectiveness in seniors[J]. Int J Epidemiol, 2006, 35(2): 337-344. DOI: 10.1093/ije/dyi274.

10.McGrath LJ, Spangler L, Curtis JR, et al. Using negative control outcomes to assess the comparability of treatment groups among women with osteoporosis in the United States[J]. Pharmacoepidemiol Drug Saf, 2020, 29(8): 854-863. DOI: 10.1002/p ds.5037.

11.Shi X, Miao W, Tchetgen ET. A selective review of negative control methods in epidemiology[J]. Curr Epidemiol Rep, 2020, 7(4): 190-202. DOI: 10.1007/s40471-020-00243-4.

12.Ivers LC, Hilaire IJ, Teng JE, et al. Effectiveness of reactive oral cholera vaccination in rural Haiti: a case-control study and bias-indicator analysis[J]. Lancet Glob Health, 2015, 3(3): e162-168. DOI: 10.1016/s2214-109x(14)70368-7.

13.Ercumen A, Naser AM, Unicomb L, et al. Effects of source- versus household contamination of tubewell water on child diarrhea in rural Bangladesh: a randomized controlled trial[J]. PLoS One, 2015, 10(3): e0121907. DOI: 10.1371/journal.pone.0121907.

14.Danaei G, García Rodríguez LA, Fernandez Cantero O, et al. Statins and risk of diabetes: an analysis of electronic medical records to evaluate possible bias due to differential survival[J]. Diabetes Care, 2013, 36(5): 1236-1240. DOI: 10.2337/dc12-1756.

15.Tchetgen Tchetgen E. The control outcome calibration approach for causal inference with unobserved confounding[J]. Am J Epidemiol, 2014, 179(5): 633-640. DOI: 10.1093/aje/kwt303.

16.Schuemie MJ, Ryan PB, DuMouchel W, et al. Interpreting observational studies: why empirical calibration is needed to correct P-values[J]. Stat Med, 2014, 33(2): 209-218. DOI: 10.1002/sim.5925.

17.Cohen JM, Wood ME, Hernández-Díaz S, et al. Paternal antidepressant use as a negative control for maternal use: assessing familial confounding on gestational length and anxiety traits in offspring[J]. Int J Epidemiol, 2019, 48(5): 1665-1672. DOI: 10.1093/ije/dyz170.

18.Yang Z, Edwards D, Burgess S, et al. Association of major blood lipids with post-stroke dementia: a community-based cohort study[J]. Eur J Neurol, 2022, 29(4): 968-979. DOI: 10.1111/ene.15219.

19.Takeuchi M, Shinozaki T, Kawakami K. Universal health checkups and risk of incident diabetes and hypertension[J]. JAMA Netw Open, 2024, 7(12): e2451813. DOI: 10.1001/jamanetworkopen.2024.51813.

20.Hernández-Díaz S, Straub L, Bateman BT, et al. Risk of autism after prenatal topiramate, valproate, or lamotrigine exposure[J]. New Engl J Med, 2024, 390(12): 1069-1079. DOI: 10.1056/NEJMoa2309359.

21.Christensen J, Grønborg TK, Sørensen MJ, et al. Prenatal valproate exposure and risk of autism spectrum disorders and childhood autism[J]. JAMA, 2013, 309(16): 1696-1703. DOI: 10.1001/jama.2013.2270.

22.Bjørk MH, Zoega H, Leinonen MK, et al. Association of prenatal exposure to antiseizure medication with risk of autism and intellectual disability[J]. JAMA Neurol 2022, 79(7): 672-681. DOI: 10.1001/jamaneurol.2022.1269.

23.Wiggs KK, Rickert ME, Sujan AC, et al. Antiseizure medication use during pregnancy and risk of ASD and ADHD in children[J]. Neurology, 2020, 95(24): e3232-e3240. DOI: 10.1212/wnl.0000000000010993.

24.Wood AG, Nadebaum C, Anderson V, et al. Prospective assessment of autism traits in children exposed to antiepileptic drugs during pregnancy[J]. Epilepsia, 2015, 56(7): 1047-1055. DOI: 10.1111/epi.13007.

25.Blotière PO, Miranda S, Weill A, et al. Risk of early neurodevelopmental outcomes associated with prenatal exposure to the antiepileptic drugs most commonly used during pregnancy: a French nationwide population-based cohort study[J]. BMJ Open, 2020, 10(6): e034829. DOI: 10.1136/bmjopen-2019-034829.

26.Rihtman T, Parush S, Ornoy A. Preliminary findings of the developmental effects of in utero exposure to topiramate[J]. Reprod Toxicol, 2012, 34(3): 308-311. DOI: 10.1016/j.reprotox. 2012.05.038.

27.Bromley RL, Calderbank R, Cheyne CP, et al. Cognition in school-age children exposed to levetiracetam, topiramate, or sodium valproate[J]. Neurology, 2016, 87(18): 1943-1953. DOI: 10.1212/wnl.0000000000003157.

28.Bromley RL, Mawer GE, Briggs M, et al. The prevalence of neurodevelopmental disorders in children prenatally exposed to antiepileptic drugs[J]. J Neurol Neurosurg Psychiatry, 2013, 84(6): 637-643. DOI: 10.1136/jnnp-2012-304270.

29.Baker GA, Bromley RL, Briggs M, et al. IQ at 6 years after in utero exposure to antiepileptic drugs: a controlled cohort study[J]. Neurology, 2015, 84(4): 382-390. DOI: 10.1212/wnl.0000000000001182.

30.Eilertsen EM, Gjerde LC, Reichborn-Kjennerud T, et al. Maternal alcohol use during pregnancy and offspring attention-deficit hyperactivity disorder (ADHD): a prospective sibling control study[J]. Int J Epidemiol, 2017, 46(5): 1633-1640. DOI: 10.1093/ije/dyx067.

31.Polanczyk G, de Lima MS, Horta BL, et al. The worldwide prevalence of ADHD: a systematic review and metaregression analysis[J]. Am J Psychiatry, 2007, 164(6): 942-948. DOI: 10.1176/ajp.2007.164.6.942.

32.Linnet KM, Dalsgaard S, Obel C, et al. Maternal lifestyle factors in pregnancy risk of attention deficit hyperactivity disorder and associated behaviors: review of the current evidence[J]. Am J Psychiatry, 2003, 160(6): 1028-1040. DOI: 10.1176/appi.ajp.160.6.1028.

33.O'Connor MJ, Paley B. Psychiatric conditions associated with prenatal alcohol exposure[J]. Dev Disabil Res Rev, 2009, 15(3): 225-234. DOI: 10.1002/ddrr.74.

34.Gronimus R, Ridout D, Sandberg S, et al. Maternal alcohol consumption[J]. London J Prim Care, 2009, 2(1): 28-35. DOI: 10.1080/17571472.2009.11493239.

35.Yang Z, Toh S, Li X, et al. Statin use is associated with lower risk of dementia in stroke patients: a community-based cohort study with inverse probability weighted marginal structural model analysis[J]. Eur J Epidemiol, 2022, 37(6): 615-627. DOI: 10.1007/s10654-022-00856-7.

36.Collins R, Armitage J, Parish S, et al. MRC/BHF Heart Protection Study of cholesterol-lowering with simvastatin in 5963 people with diabetes: a randomised placebo-controlled trial[J]. Lancet, 2003, 361(9374): 2005-2016. DOI: 10.1016/s0140-6736(03)13636-7.

37.Heart Protection Study Collaborative Group. MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20,536 high-risk individuals: a randomised placebo-controlled trial[J]. Lancet, 2002, 360(9326): 7-22. DOI: 10.1016/s0140-6736(02)09327-3.

38.Peña JM, Aspberg S, MacFadyen J, et al. Statin therapy and risk of fracture: results from the JUPITER randomized clinical trial[J]. JAMA Intern Med, 2015, 175(2): 171-177. DOI: 10.1001/jamainternmed.2014.6388.

39.Toh S, Hernández-Díaz S. Statins and fracture risk. A systematic review[J]. Pharmacoepidemiol Drug Saf, 2007, 16(6): 627-640. DOI: 10.1002/pds.1363.

40.Reith C, Staplin N, Herrington WG, et al. Effect on non-vascular outcomes of lowering LDL cholesterol in patients with chronic kidney disease: results from the Study of Heart and Renal Protection[J]. BMC Nephrol, 2017, 18(1): 147. DOI: 10.1186/s12882-017-0545-2.

41.You SC, Rho Y, Bikdeli B, et al. Association of ticagrelor vs clopidogrel with net adverse clinical events in patients with acute coronary syndrome undergoing percutaneous coronary intervention[J]. JAMA, 2020, 324(16): 1640-1650. DOI: 10.1001/jama.2020.16167.

42.Levine GN, Bates ER, Bittl JA, et al. 2016 ACC/AHA guideline focused update on duration of dual antiplatelet therapy in patients with coronary artery disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines[J]. J Thorac Cardiovasc Surg, 2016, 152(5): 1243-1275. DOI: 10.1016/j.jtcvs.2016.07.044.

43.Valgimigli M, Bueno H, Byrne RA, et al. 2017 ESC focused update on dual antiplatelet therapy in coronary artery disease developed in collaboration with EACTS: the task force for dual antiplatelet therapy in coronary artery disease of the european society of cardiology (ESC) and of the european association for cardio-thoracic Surgery (EACTS)[J]. Eurn Heart Jl, 2018, 39(3): 213-260. DOI: 10.1093/eurheartj/ehx419.

44.Wallentin L, Becker RC, Budaj A, et al. Ticagrelor versus clopidogrel in patients with acute coronary syndromes[J]. New Engl J Med, 2009, 361(11): 1045-1057. DOI: 10.1056/NEJMoa0904327.

45.Mahaffey KW, Wojdyla DM, Carroll K, et al. Ticagrelor compared with clopidogrel by geographic region in the Platelet Inhibition and Patient Outcomes (PLATO) trial[J]. Circulation, 2011, 124(5): 544-554. DOI: 10.1161/circulationaha.111.047498.

46.Yang Q, Yang Z, Cai X, et al. Advances in methodologies of negative controls: a scoping review[J]. J Clin Epidemiol, 2024, 166: 111228. DOI: 10.1016/j.jclinepi.2023.111228.

Popular papers
Last 6 months