Welcome to visit Zhongnan Medical Journal Press Series journal website!

Home Articles Vol 33,2024 No.12 Detail

Signals mining and analysis of adverse drug events of lixisenatide based on FAERS database

Published on Jan. 03, 2025Total Views: 811 times Total Downloads: 82 times Download Mobile

Author: DAI Jinlin 1# LIU Yan 2# YANG Tianyi 3 LI Jiaoyue 1 HUANG Zifan 1 LUO Yunpeng 1 LI Ping 1 ZHAO Qiyao 1 ZHANG Li 4 YANG Xiaohui 1

Affiliation: 1. Department of Nephrology and Endocrinology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China 2. Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China 3. Rutgers University, New Brunswick, New Jersey 08901, USA 4. Department of Scientific Research, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, China

Keywords: Lixisenatide Glucagon-like peptide-1 receptor agonist Adverse drug events FAERS database Signal mining Pharmacovigilance

DOI: 10.12173/j.issn.1005-0698.202407067

Reference: DAI Jinlin, LIU Yan, YANG Tianyi, LI Jiaoyue, HUANG Zifan, LUO Yunpeng, LI Ping, ZHAO Qiyao, ZHANG Li, YANG Xiaohui. Signals mining and analysis of adverse drug events of lixisenatide based on FAERS database[J]. Yaowu Liuxingbingxue Zazhi, 2024, 33(12): 1325-1335. DOI: 10.12173/j.issn.1005-0698.202407067.[Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

Objective To investigate post-marketing adverse drug event (ADE) signals associated with lixisenatide, and to provide guidance for safe clinical use.

Methods  The ADE reporting data of lixisenatide ADE were mined and the signals were detected from the U.S. Food and Drug Administration Adverse Event Reporting System (FAERS) database from the first quarter 2013 to the second quarter 2024 using the reporting odds ratio (ROR) method and Bayesian confidence propagation neural network (BCPNN) method.

Results  After data cleaning, a total of 5 162 ADE reports with lixisenatide as the primary suspected drug were collected. The 85 ADE signals identified by the two statistical analysis methods,   affected 14 system-organ classes (SOC). They were primarily concentrated in injuries, poisonings, and procedural complications (25.88%), various examinations (14.12%), systemic diseases and reactions at administration sites (14.12%), gastrointestinal diseases (9.41%), and various neurological diseases (5.88%). There were 28 ADE signals such as pancreatitis, visual impairment, and color blindness, that were not included in the drug instructions.

Conclusion In addition to monitoring for common ADE associated with GLP-1 receptor agonists such as hypoglycemia, gastrointestinal, and neurological effects, clinicians should also be vigilant for underlying ADE like pancreatic-related diseases, eye toxicity reaction when using lixisenatide to ensure safe and rational medication use.

Full-text
Please download the PDF version to read the full text: download
References

1. Qaseem A, Obley AJ, Shamliyan T, et al. Newer Pharmacologic treatments in adults with type 2 diabetes: a clinical guideline from the american college of physicians  [J]. Ann Intern Med, 2024, 177(5): 658-666. DOI: 10.7326/M23-2788.

2. ElSayed NA, Aleppo G, Aroda VR, et al. 2. Classification and diagnosis of diabetes: standards of care in diabetes—2023[J]. Diabetes Care, 2023, 46(Suppl 1): S19-S40. DOI: 10.2337/dc23-S002.

3. Werner U, Haschke G, Herling AW, et al. Pharmacological profile of lixisenatide: a new GLP-1 receptor agonist for the treatment of type 2 diabetes[J]. Regul Pept, 2010, 164(2-3): 58-64. DOI: 10.1016/j.regpep.2010.05.008.

4. Bolli GB, Owens DR. Lixisenatide, a novel GLP-1 receptor agonist: efficacy, safety and clinical implications for type 2 diabetes mellitus[J]. Diabetes Obes Metab, 2014, 16(7): 588-601. DOI: 10.1111/dom.12253.

5. Becker RHA, Stechl J, Msihid J, et al. Lixisenatide resensitizes the insulin-secretory response to intravenous glucose challenge in people with type 2 diabetes-a study in both people with type 2 diabetes and healthy subjects[J]. Diabetes Obes Metab, 2014, 16(9): 793-800. DOI: 10.1111/dom.12278.

6. Vargas-Uricoechea H, Frias JP, Vargas-Sierra HD. Fixed-ratio combinations (basal insulin plus GLP-1RA) in type 2 diabetes. an analytical review of pivotal clinical trials[J]. Rev Diabet Stud, 2023, 19(1): 14-27. DOI: 10.1900/RDS.2023.19.14.

7. Christensen M, Miossec P, Larsen BD, et al. The design and discovery of lixisenatide for the treatment of type 2 diabetes mellitus[J]. Expert Opin Drug Discov, 2014, 9(10): 1223-1251. DOI: 10.1517/17460441.2014.942638.

8. Bain SC. The clinical development program of lixisenatide: a once-daily glucagon-like peptide-1 receptor agonist[J]. Diabetes Ther, 2014, 5(2): 367-383. DOI: 10.1007/s13300-014-0073-z.

9. Yang W, Min K, Zhou Z, et al. Efficacy and safety of lixisenatide in a predominantly Asian population with type 2 diabetes insufficiently controlled with basal insulin: the GetGoal-L-C randomized trial[J]. Diabetes Obes Metab, 2018, 20(2): 335-343. DOI: 10.1111/dom.13072.

10. 刘姗姗, 陈果, 刘笑, 等. 基于FAERS数据库的加卡奈珠单抗不良事件信号挖掘与分析[J]. 药物流行病学杂志, 2024, 33(8): 860-868. [Liu SS, Chen G, Liu X, et al. Signal mining and analysis for adverse drug events of galcanezumab based on FAERS database[J]. Chinese Journal of Pharmacoepidemiology, 2024, 33(8): 860-868.] DOI: 10.12173/j.issn.1005-0698.202404018.

11. Liu W, Du Q, Guo Z, et al. Post-marketing safety surveillance of sacituzumab govitecan: an observational, pharmacovigilance study leveraging FAERS database[J]. Front Pharmacol, 2023, 14: 1283247. DOI: 10.3389/fphar.2023.1283247.

12. 魏安华, 曾露, 王璐, 等. 基于FAERS数据库的替诺福韦二吡呋酯和丙酚替诺福韦不良事件分析及肾脏安全性比较[J]. 药物流行病学杂志, 2023, 32(12): 1362-1370. [Wei AH, Zeng L, Wang L, et al. Adverse event analysis and renal safety comparison of tenofovir disoproxil and tenofovir alafenamide based on FAERS database[J]. Chinese Journal of Pharmacoepidemiology, 2023, 32(12): 1362-1370.] DOI: 10.19960/j.issn.1005-0698. 202312006.

13. Ooba N, Kubota K. Selected control events and reporting odds ratio in signal detection methodology[J]. Pharmacoepidemiol Drug Saf, 2010, 19(11): 1159-1165. DOI: 10.1002/pds.2014.

14. Norén GN, Bate A, Orre R, et al. Extending the methods used to screen the WHO drug safety database towards analysis of complex associations and improved accuracy for rare events[J]. Stat Med, 2006, 25(21): 3740-3757. DOI: 10.1002/sim.2473.

15. Sakaeda T, Tamon A, Kadoyama K, et al. Data mining of the public version of the FDA adverse event reporting system[J]. Int J Med Sci, 2013, 10(7): 796-803. DOI: 10.7150/ijms.6048.

16. Bate A, Lindquist M, Edwards IR, et al. A Bayesian neural network method for adverse drug reaction signal generation[J]. Eur J Clin Pharmacol, 1998, 54(4): 315-321. DOI: 10.1007/s002280050466.

17. Guan Y, Ji L, Zheng L, et al. Development of a drug risk analysis and assessment system and its application in signal excavation and analysis of 263 cases of fluoroquinolone-induced adverse reactions[J]. Front Pharmacol, 2022, 13:892503. DOI: 10.3389/fphar.2022.892503.

18. Baker DE, Levien TL. Lixisenatide[J]. Hosp Pharm, 2017, 52(1): 65-80. DOI: 10.1310/hpj5201-6.5.

19. Trujillo JM, Nuffer W, Smith BA. GLP-1 receptor agonists: an updated review of head-to-head clinical studies[J]. Ther Adv Endocrinol Metab, 2021, 12: 2042018821997320. DOI: 10.1177/2042018821997320.

20. Trujillo JM, Goldman J. Lixisenatide, a once‐daily prandial glucagon‐like peptide‐1 receptor agonist for the treatment of adults with type 2 diabetes[J]. Pharmacotherapy, 2017, 37(8): 927-943. DOI: 10.1002/phar.1962.

21. Nauck MA, Meier JJ. The incretin effect in healthy individuals and those with type 2 diabetes: physiology, pathophysiology, and response to therapeutic interventions[J]. Lancet Diabetes Endocrinol, 2016, 4(6): 525-536. DOI: 10.1016/S2213-8587(15)00482-9.

22. Aroda VR, Rosenstock J, Wysham C, et al. Efficacy and safety of lixilan, a titratable fixed-ratio combination of insulin glargine plus lixisenatide in type 2 diabetes inadequately controlled on basal insulin and metformin: the lixilan-l randomized trial[J]. Diabetes Care, 2016, 39(11): 1972-1980. DOI: 10.2337/dc16-1495.

23. Christensen M, Knop FK, Vilsbøll T, et al. Lixisenatide for type 2 diabetes mellitus[J]. Expert Opin Investig Drugs, 2011, 20(4): 549-557. DOI: 10.1517/13543784. 2011.562191.

24. Adetunji O, Kalra S, Baruah M, et al. Glucagon-like peptide-1 receptor agonists in the treatment of type 2 diabetes: past, present, and future[J]. Indian J Endocrinol Metab, 2016, 20(2):254-267. DOI: 10.4103/2230-8210.176351.

25. Liu L, Chen J, Wang L, et al. Association between different GLP-1 receptor agonists and gastrointestinal adverse reactions: a real-world disproportionality study based on FDA adverse event reporting system database[J]. Front Endocrinol (Lausanne), 2022, 13: 1043789. DOI: 10.3389/fendo.2022.1043789.

26. Trujillo JM, Roberts M, Dex T, et al. Low incidence of gastrointestinal adverse events over time with a fixed-ratio combination of insulin glargine and lixisenatide versus lixisenatide alone[J]. Diabetes Obes Metab, 2018, 20(11): 2690-2694. DOI: 10.1111/dom.13444.

27. Watada H, Takami A, Spranger R, et al. Efficacy and safety of 1 ∶ 1 fixed-ratio combination of insulin glargine and lixisenatide versus lixisenatide in japanese patients with type 2 diabetes inadequately controlled on oral antidiabetic drugs: the lixilan JP-O1 randomized clinical trial[J]. Diabetes Care, 2020, 43(6): 1249-1257. DOI: 10.2337/dc19-2452.

28. Terauchi Y, Usami M, Inoue T. The durable safety and effectiveness of lixisenatide in Japanese people with type 2 diabetes: the post-marketing surveillance PRANDIAL study[J]. Adv Ther, 2022, 39(6): 2873-2888. DOI: 10.1007/s12325-022-02121-5.

29. Monami M, Nreu B, Scatena A, et al. Safety issues with glucagon-like peptide-1 receptor agonists (pancreatitis, pancreatic cancer and cholelithiasis): data from randomized controlled trials[J]. Diabetes Obes Metab, 2017, 19(9): 1233-1241. DOI: 10.1111/dom.12926.

30. Marchand L, Luyton C, Bernard A. Glucagon-like peptide-1 (GLP-1) receptor agonists in type 2 diabetes and long-term complications: FOCUS on retinopathy[J]. Diabet Med, 2020, 38(1):e14390. DOI: 10.1111/dme.14390.

31. Hernández C, Bogdanov P, Corraliza L, et al. Topical administration of GLP-1 receptor agonists prevents retinal neurodegeneration in experimental diabetes[J]. Diabetes, 2016, 65(1): 172-187. DOI: 10.2337/db15-0443.

32. Chung YW, Lee JH, Lee JY, et al. The anti-inflammatory effects of glucagon-like peptide receptor agonist lixisenatide on the retinal nuclear and nerve fiber layers in an animal model of early type 2 diabetes[J]. Am J Pathol, 2020, 190(5): 1080-1094. DOI: 10.1016/j.ajpath.2020.01.011.

33. Salameh TS, Rhea EM, Talbot K, et al. Brain uptake pharmacokinetics of incretin receptor agonists showing promise as Alzheimer's and Parkinson's disease therapeutics[J]. Biochemical Pharmacol, 2020, 180: 114187. DOI: 10.1016/j.bcp.2020.114187.

34. Chen SD, Chuang YC, Lin TK, et al. Alternative role of glucagon-like Peptide-1 receptor agonists in neurodegenerative diseases[J]. Eur J Pharmacol, 2023, 938: 175439. DOI: 10.1016/j.ejphar.2022.175439.

35. McIntyre RS, Mansur RB, Rosenblat JD, et al. The association between glucagon-like peptide-1 receptor agonists (GLP-1 RAs) and suicidality: reports to the food and drug administration adverse event reporting system (FAERS)[J]. Expert Opin Drug Saf, 2024, 23(1): 47-55. DOI: 10.1080/14740338.2023.2295397.

Popular papers
Last 6 months