Welcome to visit Zhongnan Medical Journal Press Series journal website!

Home Articles Vol 32,2023 No.11 Detail

Optimization of extraction process of Coptidis Rhizoma-Scutellariae Radix based on BP-ANN and CCD-RSM in information entropy theory

Published on Nov. 30, 2023Total Views: 1760 times Total Downloads: 531 times Download Mobile

Author: Bao-Cai WANG Jun-Jiang LI Zhi-Wei XU

Affiliation: Center for Scientific Research Preparation, Gansu Provincial Hospital of TCM, Lanzhou 730050, China

Keywords: Coptidis Rhizoma-Scutellariae Radix BP-ANN CCD-RSM Extraction process Information entropy theory

DOI: 10.19960/j.issn.1005-0698.202311010

Reference: Bao-Cai WANG, Jun-Jiang LI, Zhi-Wei XU.Optimization of extraction process of Coptidis Rhizoma-Scutellariae Radix based on BP-ANN and CCD-RSM in information entropy theory[J].Yaowu Liuxingbingxue Zazhi,2023, 32(11):1267-1274.DOI: 10.19960/j.issn.1005-0698.202311010.[Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

Objective  To optimize the extraction process of Coptidis Rhizoma-Scutellariae Radix.

Methods  The contents of epiberberine, coptisine, palmatine and berberine were determined by HPLC, the contents of total alkaloids were determined by UV, and the quantity of water extracted was calculated. The above five indexes and dry extract yield were comprehensively scored based on information entropy theory. 13 sets of data from the central composite design-response surface methodology (CCD-RSM) were used as training data, modeled and analyzed using back propagation artificial neural network (BP-ANN), and simulated to predict the optimal extraction process parameters of Coptidis Rhizoma-Scutellariae Radix using the composite score as the index of investigation.

Results  The best conditions were 11 times of water, boiling 95 minutes each time, twice for boiling, the maximum comprehensive score is 106.41 at this point.

Conclusion  The mathematical model established by BP-ANN has good predictability, and the optimized extraction process has the characteristics of high efficiency, stability, and feasibility.

Full-text
Please download the PDF version to read the full text: download
References

1.李桐, 王辉, 张昊, 等. 基于分子热力学特征探讨黄连解毒汤水煎自沉淀形成机制[J]. 中草药, 2017, 48(17): 3505-3510. [Li T,Wang H, Zhang H, et al. Formation mechanism of precipitation in Huanglian Jiedu Decoction based on molecular thermodynamic characteristics[J].Chinese Traditional and Herbal Drugs, 2017, 48(17): 3505-3510.] DOI: 10.7501/j.issn.0253-2670.2017.17.009.

2.乔善义, 郭继芬, 张瑞萍, 等. 中国有机质谱学第十三届全国学术大会论文集[C]. 北京: 中国质谱学会, 2005: 72-74.

3.中国药典2020年版. 一部[S]. 2020: 316-318.

4.张梅, 况刚, 张有金, 等. 基于设计空间法优化北刘寄奴-骨碎补的提取工艺研究[J]. 中草药, 2022, 53(8): 2341-2347. [Zhang M, Kuang G, Zhang YJ, et al. Optimization of extraction technology of Siphonostegiae Herba-Drynariae Rhizoma based on design space method[J]. Chinese Traditional and Herbal Drugs, 2022, 53(8): 2341-2347.] DOI: 10.7501/j.issn.0253-2670.2022.08.010.

5.田雨, 李喜香, 王宝才, 等. 基于信息熵理论星点设计-效应面法优化温肾强骨丸的提取工艺[J]. 甘肃中医药大学学报, 2020, 37(5): 49-55. [Tian Y, Li XX, Wang BC, et al. Optimization of the extraction process of Wenshen Qianggu pills based on the information entropy theory of star design response surface methodology[J]. Journal Gansu Universityof Chinese Medicine, 2020, 37(5): 49-55.] DOI: 10.16841/j.issn1003-8450.2020.05.11.

6.祝子喻, 谢雨欣, 俞月婷, 等. 基于熵权-层次分析法及反向传播神经网络多指标优化地黄水提物提取工艺[J]. 食品工业科技, 2022, 43(19): 264-272. [Zhu ZY, Xie YX, Yu YT, et al. Optimization of extraction process of aqueous extract of Rehmannia glutinosabased on entropy weight method in cooperation with analytic hierarchy process and back propagation neural network with multiple indicators[J]. Science and Technology of Food Industry, 2022, 43(19): 264-272.] DOI: 10.13386/j.issn1002-0306.2021120331.

7.谢平, 魏海峰, 温仁华, 等. 基于BP神经网络-遗传算法和信息熵理论优化凉粉草煎煮提取工艺[J]. 中国中医药信息杂志, 2022, 29(2): 86-92. [Xie P, Wei HF, Wen RH, et al. Optimization on extraction process of Mesona chinensis Benth. based on BP neural network- genetic algorithm and information entropy theory[J].Chinese Journal of Information on TCM, 2022, 29(2): 86-92.] DOI: 10.19879/j.cnki.1005-5304.202105496.

8.石磊, 高卫红, 吕莉莉, 等. 基于BP人工神经网络和遗传算法的葛根总黄酮提取工艺优化研究[J]. 中国中医急症, 2018, 27(2): 198-201. [Shi L, Gao WH, Lyu LL, et al. Research on extraction process optimization for total flavones in Radix puerariae based on back prop-agation artificial neural network and genetic algorithm[J]. Journal of Emergency in Traditional Chinese Medicine, 2018, 27(2): 198-201.] DOI: 10.3969/j.issn.1004-745X.2018.02.003.

9.王宝才. BP-ANN结合正交试验设计优化白及多糖提取工艺研究[J]. 中国医院药学杂志, 2022, 42(5): 501-504. [Wang BC. Optimization of extraction process of polysaccharides from Bletillae rhizoma by BP-ANN and orthogonal test[J]. Chinese Journal of Hospital Pharmacy, 2022, 42(5): 501-504.] DOI: 10.13286/j.1001-5213.2022.05.07.

10.张超, 韩丽, 杨秀梅, 等. BP神经网络结合正交试验优化苦参方中荆芥挥发油的提取工艺[J]. 中成药, 2015, 37(1): 70-74. [Zhang C, Han L, Yang XM, et al. Extraction optimization for volatile oil from Schizonepetae Herba in Kushen recipe by back propagation neural network and orthogonal design[J]. Chinese Traditional Patent Medicine, 2015, 37(1): 70-74.] DOI: 10.3969/j.issn.1001-1528.2015.01.014

11.易丽娟, 李雅, 邹苏兰, 等. 基于正交试验设计与BP神经网络优化益气活血方水提工艺研究[J]. 中草药, 2019, 50(18): 4305-4312. [Yi LJ, Li Y, Zou SL, et al. Optimization of water extraction technology of Yiqi Huoxue prescription based on orthogonal test design and BP neural network[J]. Chinese Traditional and Herbal Drugs, 2019, 50(18): 4305-4312.] DOI: 10.7501/j.issn.0253-2670. 2019.18.008.

12.王潇, 王婷, 张晨, 等. 人工神经网络优化厚朴提取工艺及其“发汗”前后的含量测定[J]. 中华中医药学刊, 2019, 37(12): 2978-2982. [Wang X, Wang T, Zhang C, et al. Optimization of extraction technology of Magnolia officinalis by artificial neural network and determination of its content before and after sweating[J]. Chinese Archives of Traditional Chinese Medicine, 2019, 37(12): 2978-2982.] DOI: 10.13193/j.issn.1673-7717.2019.12.038.

13.李辉东, 关德新, 袁凤辉, 等. BP人工神经网络模拟杨树林冠蒸腾[J]. 生态学报, 2015, 35(12): 4137-4145. [Li HD, Guan XD, Yuan FH, et al. Modeling canopy transpiration of young poplar trees (Populus × euramericana cv.N3016) based on back propagation artificial neural network[J]. Acta Ecologica Sinica, 2015, 35(12): 4137-4145.] DOI: 10.5846 /stxb201308262155.

14.付琳, 付强, 李冀, 等. 黄连化学成分及药理作用研究进展[J]. 中医药学报, 2021, 49(2): 87-92. [Fu L, Fu Q, Li J, et al. Research progress in chemical constituents and pharmacological effects of Coptidis Rhizoma[J]. Acta Chinese Medicine and Pharmacology, 2021, 49(2): 87-92.]DOI: 10.19664/j.cnki.1002-2392.210044.

15.王玲, 杜潇, 祝华莲, 等. 黄柏有效成分的药理作用研究进展[J]. 江苏中医药, 2022, 54(4): 77-81. [Wang L, Du X, Zhu HL, et al. Research progress in pharmacological action of active components of Phellodendri Chinensis Cortex[J]. Jiangsu Journal of Traditional Chinese Medicine, 2022, 54(4): 77-81.] DOI: 10.19844/j.cnki.1672-397X.2022.04.024.

16.代琪, 胡宇, 雷蕾, 等. 黄柏炮制品的考证、化学成分和药理作用研究进展[J]. 亚太传统医药, 2020, 16(10): 205-208. [Dai Q, Hu Y, Lei L, et al. Research progress in the textual research, chemical composition and pharmacological action of processed products of PhellodendriChinensis Cortex[J]. Asia-Pacific Traditional Medicine, 2020, 16(10): 205-208.] DOI: 10.11954/ytctyy.202010062.

Popular papers
Last 6 months