非小细胞肺癌的分子靶向治疗显著改善了驱动基因阳性患者的临床结局,但伴随的不良反应(ADR)对患者生活质量和治疗连续性构成挑战。随着多种靶向药物在临床的广泛应用,充分认识并规范管理其ADR至关重要。本文系统综述了针对表皮生长因子受体等多个靶点抑制剂常见及特有的ADR谱,如皮肤毒性、腹泻、肝毒性及间质性肺疾病等;同时探讨了预测性生物标志物在识别高风险人群中的潜在价值,旨在实现早期预警;最后,基于循证医学证据与权威指南,重点强调了ADR按照严重程度分级的多学科处理原则,包括剂量调整与中断、对症支持治疗以及生活方式干预等。通过对ADR的深入理解、前瞻性监测和规范化管理,以期在确保患者治疗获益同时最大限度地减轻治疗相关毒性负担。
中国国家癌症中心公布的最新数据[1]显示,2022年肺癌为我国最高发癌种,新发病例数为1 060 600例,多数患者首诊即为晚期,同年肺癌死亡病例达733 300例,成为癌症死亡的第一大原因。既往化疗是晚期非小细胞肺癌(non-small cell lung cancer,NSCLC)的主要治疗方式,阳性驱动基因的识别推动其治疗领域实现从传统化疗到精准靶向的划时代变革。新一代测序技术可对NSCLC进行全面遗传表征以确定分子亚型分型,基于突变分子的特定用药极大程度降低了晚期患者的死亡率[2]。靶向药物在特异性抑制肿瘤细胞生长信号通路发挥作用的同时,也会影响正常组织中此类通路的生理功能,从而出现相关不良反应(adverse drug reaction,ADR),影响患者生活质量、治疗连续性和长期生存结局,不同作用机制的药物呈现截然不同的毒性特征。因此,有效预测和识别ADR并对其进行规范化监测和分级干预,已成为抗肿瘤过程中的重要临床任务。本文旨在系统综述NSCLC靶向治疗ADR的特点及相应管理策略。
1 不同作用靶点药物的ADR
1.1 表皮生长因子受体外显子19缺失或21L858R点位突变
第一代表皮生长因子受体(epidermal growth factor receptor,EGFR)酪氨酸激酶抑制剂(epidermal growth factor receptor-tyrosine kinase inhibitors,EGFR-TKIs)厄洛替尼和吉非替尼均为喹啉类衍生物,通过可逆结合在细胞激酶结构域三磷酸腺苷结合位点以阻断EGFR信号传导通路[3]。RELAY研究[4]显示,接受厄洛替尼治疗的患者最常见ADR为腹泻(72.4%)和痤疮样皮疹(68.9%),3~4级ADR包括痤疮样皮疹(9.3%)、丙氨酸转氨酶(alanine aminotransferase,ALT)升高(7.6%)及高血压(5.8%)等,吉非替尼在250 mg·d-1剂量下同样以皮肤和消化道反应为主[5-6]。一项多中心Ⅲ期临床试验[7]显示,埃克替尼最常报告的治疗相关ADR为ALT及天冬氨酸转氨酶(aspartate aminotransferase,AST)升高,3级及以上ADR发生率见表1。
本文中ADR严重程度分级参考美国国立癌症研究所发布的通用不良事件术语评价标准(Common Terminology Criteria for Adverse Events,CTCAE)5.0版 [8]。
第二代EGFR-TKIs阿法替尼和达可替尼与EGFR C797残基形成不可逆共价键阻断三磷酸腺苷结合,从而对胞内酪氨酸激酶产生不可逆抑制作用。研究[9]表明,阿法替尼治疗组(84.8%)皮疹的发生风险高于厄洛替尼组(62.0%)和吉非替尼组(62.0%)。在ARCHER 1050研究[10]中,接受达可替尼的患者除腹泻(87.0%)及甲沟炎(62.0%)等ADR,口腔炎(44.0%)也较为常见,其黏膜炎症反应的发生率高于吉非替尼。需要注意的是,该研究中吉非替尼组皮疹发生率与其他试验[5-6]存在一定差异,考虑受入组标准、随访时间、试验人群特征差异以及毒性管理方法等多种因素影响。
总体而言,第三代EGFR-TKIs呈现出良好的安全性,绝大多数ADR为1~2级。奥希替尼选择性抑制EGFR T790M耐药突变,在携带G719X和L861Q突变患者中也表现出可控毒性[11]。一项Ⅲ期临床试验[12]表明,奥希替尼导致永久停药的发生率略低于吉非替尼和厄洛替尼。Shalata等[13]报道了首例NSCLC患者经奥希替尼80 mg,qd一线治疗后出现致死性骨髓抑制事件,暂时停药及输血治疗后毒性缓解,后续奥希替尼剂量减至每隔一天40 mg。伏美替尼是我国自主研发的第三代EGFR-TKIs,在局部晚期或转移性NSCLC患者一线治疗中显示出优异疗效,且安全性良好,同样的药物还有阿美替尼和贝福替尼[7, 14-15],相关ADR见表1。上述临床试验中不同EGFR-TKIs之间皮疹和腹
泻的发生率[4, 6-7, 9-10, 12, 15-16]差异见图1。
1.2 EGFR外显子20插入
EGFR外显子20插入突变存在于2.0%~3.0%的NSCLC患者中,具有高度异质性,主要聚集在外显子20的αC-螺旋区、近环区和远环区,通常对第一代至第三代EGFR-TKIs存在内在耐药性。针对该突变的EGFR-TKIs舒沃替尼用于一线治疗时安全性特征良好,仅2.0%的患者因相关ADR终止治疗[17],且其ADR以轻中度为主,剂量调整需求量少,整体耐受性可控。
1.3 间变性淋巴瘤激酶重排
第一代间变性淋巴瘤激酶(anaplastic lymphoma kinase,ALK)抑制剂克唑替尼主要引起视力障碍和腹泻[18],亚洲患者报告的转氨酶升高和食欲下降占比高于非亚洲患者。克唑替尼除了抑制ALK突变,对c-ros癌基因1(c-ros oncogene 1,ROS1)和间质-上皮转化因子(mesenchymal-epithelial transition factor,MET)突变患者也表现出良好疗效[19]。第二代ALK抑制剂阿来替尼和布格替尼的代谢毒性较为突出,一项Ⅲ期临床试验[20]显示,超30.0%经阿来替尼或布格替尼治疗的患者出现血肌酸激酶(creatine phosphokinase,CK)、ALT和AST升高,而塞瑞替尼的腹泻发生率较高[21]。作为首个国产ALK抑制剂,恩沙替尼最常报告的ADR为皮疹(21.1%),其他ADR包括瘙痒(3.8%)、便秘(2.2%)、面部水肿(1.3%)等[21]。尽管第二代ALK抑制剂疗效有所提高,耐药性及中枢神经系统(central nervous system,CNS)进展(如CNS新增转移灶、原有病灶恶化、出现神经症状等)仍是一大难题。第三代ALK抑制剂洛拉替尼对已确定的ALK耐药突变有着广泛覆盖范围,是先前ALK抑制剂治疗失败后的标准选择[22]。便秘方面,以上ALK抑制剂中克唑替尼发生率相对较高[18, 20-22],如图2所示。其他作用于ALK重排的药物还有伊鲁阿克及依奉阿克。值得警惕的是,临床数据显示多数ALK抑制剂所致高脂血症患者虽经降脂治疗血脂仍控制不佳。
1.4 Kirsten大鼠肉瘤病毒癌基因同源物突变
Kirsten大鼠肉瘤病毒癌基因同源物(Kirsten rat sarcoma viral oncogene homolog,KRAS)突变历来被认为“无成药性”,2021年索托拉西布的上市改变了这一局面。在一项KRAS G12C突变患者的Ⅲ期临床试验[23]中,索托拉西布常见ADR包括腹泻(34.0%)、恶心(14.0%)、食欲下降(11.0%)等,3级或以上ADR以腹泻(12.0%)和ALT(8.0%)升高多见。相较于索托拉西布,adagrasib(MRTX-849)具有更高的客观缓解率及CNS渗透性,然而其ADR也较多,90%以上胃肠道相关ADR在服药早期出现[24]。戈来雷塞在局部晚期或转移性 KRAS G12C 突变患者中展现出有前景的疗效,且胃肠道ADR发生率较低[25]。一些新型针对KRAS G12D等突变的抑制剂正处于临床试验中,如MRTX1133和HRS-4642。
1.5 神经营养性受体酪氨酸激酶1/2/3基因融合
神经营养性受体酪氨酸激酶(neurotrophic tyrosine kinase receptor,NTRK)基因编码原肌球蛋白受体激酶蛋白,其中涉及NTRK1、NTRK2或NTRK3的融合是致癌驱动因素,存在于包括NSCLC在内的多种肿瘤类型中。拉罗替尼是一种具有CNS活性的高选择性原肌球蛋白受体激酶抑制剂,常见ADR有疲劳(30.0%)、咳嗽(27.0%)、便秘(27.0%)等,3级及以上ADR中最常见的为贫血(10.0%)和中性粒细胞减少(5.0%)[26]。恩曲替尼对NTRK、ROS1和ALK融合阳性的患者均表现出临床活性,且大多数ADR为1~2级,神经系统疾病是其较为严重的ADR[27]。
1.6 大鼠肉瘤病毒癌基因同源物/丝裂原活化蛋白激酶激酶通路
大鼠肉瘤病毒癌基因同源物/丝裂原活化蛋白激酶激酶(mitogen-activated protein kinase kinase,MEK)通路中的关键激酶——快速加速纤维肉瘤原癌基因丝氨酸/苏氨酸激酶(rapidly accelerated fibrosarcoma proto-oncogene serine/threonine kinase,RAF)和MEK是NSCLC治疗的新型靶点,达拉非尼抑制该通路BRAF突变中最常见的V600E突变,与MEK抑制剂曲美替尼联合使用表现出显著的抗肿瘤活性。一项多中心Ⅱ期临床试验[28]中,两药组合使用时有近一半患者发生3~4级ADR,大多数或可通过剂量调整来控制。索拉非尼是临床上唯一批准使用的第一代Ⅱ型RAF抑制剂,但仍有分析显示其对晚期NSCLC患者的疗效尚且存疑[29]。
1.7 ROS1重排
ROS1蛋白是一种与ALK类似的受体酪氨酸激酶,克唑替尼是第一个被批准用于治疗ROS1重排NSCLC的酪氨酸激酶抑制剂(tyrosine kinase inhibitors,TKI),其他一线治疗选择还有恩曲替尼和塞瑞替尼。尽管瑞普替尼同样可用于治疗,但其高发的神经系统毒性需引起警惕,如头晕、周围神经病变、呼吸困难、共济失调等。他雷替尼是选择性ROS/NTRK抑制剂,TRUST-I研究[30]显示其最常见治疗相关ADR多为1~2级,可通过剂量中断或减少来控制。他雷替尼对颅内病变具有较强的活性,神经系统ADR发生率较低,包括头晕(23.1%)、味觉障碍(10.4%)和头痛(8.7%)等,多数为1级。
1.8 MET外显子14跳跃突变
MET途径的失调会导致NSCLC患者预后不佳,过去十余年多种MET抑制剂已成功应用于临床。卡马替尼在MET外显子14跳跃突变患者中表现出高度抗肿瘤活性,其最常见的治疗相关ADR是外周水肿(47.0%)、恶心(35.0%)和血肌酐升高(21.0%),3~4级ADR以呼吸困难(5.0%)最为常见[31]。除了作用于ALK阳性和ROS1重排的NSCLC患者,克唑替尼在MET外显子14跳跃突变中也表现出临床获益,相关ADR与既往研究[32]相似。特泊替尼是一种口服、高选择性MET抑制剂,最常见ADR是外周水肿(67.1%),多数为轻至中度,导致停药的ADR发生率低[33-34]。同样获批用于MET外显子14跳跃突变晚期或转移性NSCLC的还有赛沃替尼,见表1,其安全性与卡马替尼和特泊替尼基本一致[35]。MET抑制剂所致外周水肿的发生率[18, 31, 33, 35]差异见图3。
1.9 转染重排融合突变
在1%~2%的NSCLC中可检测到转染重排(rearranged during transfection,RET)融合突变,早期的卡博替尼和凡德他尼临床获益有限且毒性显著[36],2020年塞普替尼首次获美国食品药品管理局(food and drug administration,FDA)批准用于RET融合阳性NSCLC。LIBRETTO-001研究[37]中最常见ADR包括口干(38.2%)、水肿(30.9%)和AST升高(28.8%),3级及以上ADR以高血压(13.2%)多见。普拉替尼同样是一种高效CNS渗透性RET抑制剂,ARROW试验[38]最新进展提示其在400 mg 的起始剂量下总体耐受性良好。
1.10 人表皮生长因子受体2突变
人表皮生长因子受体2(human epidermal growth factor receptor 2,HER2)突变NSCLC患者占肺腺癌患者的1.0%~4.0%,吡咯替尼是一种针对HER1、HER2和HER4的不可逆泛HER TKI。在一项多中心Ⅱ期临床试验[39]中,吡咯替尼最常见的ADR为腹泻,多发生在第一个治疗周期内,中位累积持续时间为6 d。该研究中只有 11.7% 的患者出现皮疹,考虑与研究的样本量较小有关。吡咯替作为单一药物在接受化疗的HER2突变NSCLC患者中显示出良好的抗肿瘤活性和安全性。
2 ADR的预测及管理
2.1 靶向治疗相关ADR预测
既往研究[40]表明,细胞色素 P450和转运体中的单核苷酸多态性与吉非替尼所诱导的肝毒性相关联,FOXO3基因变体(G>A rs4946935)或是吉非替尼诱导肝毒性的独立危险因素,携带FOXO3基因变体rs4946935 AA的患者比携带GA或GG变异的患者发生肝毒性的风险更高。环氧化物水解酶1的非同义单核苷酸变异可能与克唑替尼相关ADR存在联系,如4级血液系统ADR和任何级别间质性肺疾病等[41]。经厄洛替尼治疗的NSCLC患者发生皮疹的严重程度与CYP1A2 基因多态性密切相关,而腹泻的发生则与ABCB1和CYP3A5基因中的单核苷酸多态性相关[42]。一项多中心队列研究[43]指出,对于开始奥希替尼治疗时无已知CNS转移的患者,ABCG2 34GA/AA与ABCB1 3435CC的联合基因型可高度预测新发CNS转移减少,这些单核苷酸多态性可能通过减少奥希替尼跨血脑屏障外排从而导致颅内奥希替尼浓度升高,而ABCG2 421C>A则与奥希替尼严重ADR发生率显著相关。Hichert等[44]通过研究血浆中可量化的参与EGFR信号传导的分子,发现肝细胞生长因子浓度与EGFR-TKIs诱导的皮疹严重程度呈显著负相关。研究[45]显示,血清中微小RNA(micro RNA,miR)表达谱同样与皮疹严重程度存在关联,在接受EGFR抑制剂治疗的254例患者中,miR-21和miR-520e的血清浓度与皮疹严重程度呈负相关,而miR-31则观察到正相关趋势。需指出的是,当前多数研究存在对照组缺失或大规模临床验证不足等局限,未来仍需深入开展相关探索。综上,在NSCLC患者个体化靶向治疗中纳入基因分型检测及生物标志物检测等或可有效降低ADR的发生率,从而提高患者治疗依从性,以期达到更大临床获益。
2.2 常见ADR对应管理
对于靶向治疗过程中出现的ADR应及时干预以控制病情进展。恶心呕吐在ALK抑制剂中总体发生率较高,对于1~2级恶心及1级呕吐,可给予止吐药物;2级呕吐建议暂时停药,直至呕吐缓解至≤1级后继续原剂量治疗;发生3~4级恶心或呕吐则需停药,缓解至≤1级后减低药物剂量重启治疗[46]。抗肿瘤治疗所致恶心呕吐(antineoplastic-induced nausea and vomiting,AINV)根据风险程度通常可分为高度、中度、低度及轻微,靶向治疗药物单独使用所致恶心呕吐的预防方案可参考AINV不同风险等级药物的推荐意见,适当结合患者自身风险因素制定。对于中-高度致吐风险治疗方案,急性AINV推荐给予口服剂型5-羟色胺3受体拮抗剂进行预防性止吐,延迟性AINV无需常规预防;而使用轻微-低度致吐风险治疗方案时急性和延迟性AINV均无需常规预防[47]。靶向药物治疗期间可通过增加运动、饮食调整等措施来预防便秘,轻中度患者给予容积性或渗透性泻剂,症状严重时适当使用比沙可啶等刺激性泻剂治疗[46]。EGFR和ALK抑制剂[48]引起腹泻的机制目前尚不明确,需密切观察并及时补液,具体分级治疗措施见表2。药物性肝损伤(drug-induced liver injury,DILI)出现后应及时停药,尽早使用N- 乙酰半胱氨酸治疗,异甘草酸镁是目前唯一具有急性DILI适应证的药物。肝衰竭等重症患者应考虑肝移植,人工肝可作为选择,具体策略参考《中国药物性肝损伤诊治指南(2023年版)》[49]。
皮肤相关ADR的发生与TKIs抑制细胞信号通路级联反应直接相关,致使角质形成细胞生长停滞、迁移能力下降、分化增强等[50],多数症状可控,3~4级ADR必要时减量或停药,待症状改善后考虑是否调整治疗方案[48]。EGFR-TKIs引起的口腔黏膜炎,1~2级可维持原剂量治疗,溃疡处用药以减少多重感染,3~4级考虑减量或停药[51],相应处理见表2。
心脏病患者应仔细评估靶向给药的可能性[46],间质性肺疾病虽属少见ADR,但其潜在致死性需高度警惕,一经确诊应立即停药[48],分级管理策略见表2。贫血的治疗方式主要包括输血、促红细胞生成、补充铁剂等,代谢失衡患者应注意监测血糖和电解质,反复代谢失衡时考虑剂量下调或停药[46]。克唑替尼等小分子抑制剂诱发外周水肿的确切机制尚不清楚,目前以经验性治疗为主,如低盐饮食、抬高下肢、淋巴按摩以及使用弹力袜等,临床实践中常选用利尿剂一线治疗。如果水肿持续存在或干扰日常活动,调整TKIs剂量或暂时停药为更有效的治疗策略,同时进行适当的皮肤和足部护理,以预防继发性蜂窝织炎。建议在TKIs治疗开始和治疗过程中测量肢体周长,当变化达5.0%~10.0%时,密切监测患者情况,若变化>10.0%则启动压迫治疗[52]。短暂性视力障碍是ALK抑制剂特有的ADR,症状较轻无需特殊处理,若持续存在或加重则协同眼科及神经内科进行系统评估[53]。作用于ALK、BRAF和MEK等靶点的抑制剂还可导致肾功能损伤,在较高级别急性肾损伤的情况下,建议中断给药直至患者情况改善[54]。有研究[55]指出,镁补充剂可被应用于急性肾损伤的防治,有望弥补抗肿瘤药物在肾毒性方面的限制,至于对靶向药物引起的肾损伤是否同样具有保护作用仍需进一步研究。
3 结语
肺癌靶向药物的开发显著改善了患者生存结局,然而,ADR的发生风险在肿瘤类型、药物类别及患者个体特征间存在显著异质性。这种异质性不仅源于药物作用靶点在正常组织的分布差异,也与患者自身遗传背景、合并症及联合用药等多种因素密切相关。随着新型靶点抑制剂及多种联合治疗模式的不断更新,相应的未知或特殊安全性挑战将不断涌现。因此,系统归纳现有知识、持续探索新型靶点抑制剂和新型疗法的安全性特征并优化管理路径,是未来研究的关键方向。主动监测与早期干预是靶向治疗管理的核心策略。治疗启动后,必须基于潜在毒性谱密切监测相关指标,以实现ADR的早期识别与积极管理,最大限度减少非必要的药物中断或剂量下调,从而保障治疗的最佳强度与连续性,维持患者生活质量,提升整体临床获益。此外,尽管已有研究表明生物标志物对ADR存在一定提示性价值,但用于精准预测尚不成熟,未来研究仍需进一步探索及开展后续大规模临床验证。
利益冲突声明:作者声明本研究不存在任何经济或非经济利益冲突。
1.Han B, Zheng R, Zeng H, et al. Cancer incidence and mortality in China, 2022[J]. J Natl Cancer Cent, 2024, 4(1): 47-53. DOI: 10.1016/j.jncc.2024.01.006.
2.Riely GJ, Wood DE, Ettinger DS, et al. Non-small cell lung cancer, version 4.2024, NCCN clinical practice guidelines in oncology[J]. J Natl Compr Canc Netw, 2024, 22(4): 249-274. DOI: 10.6004/jnccn.2204.0023.
3.Kujtan L, Subramanian J. Epidermal growth factor receptor tyrosine kinase inhibitors for the treatment of non-small cell lung cancer[J]. Expert review of anticancer therapy, 2019, 19(7): 547-559. DOI: 10.1080/14737140.2019.1596030.
4.Nakagawa K, Garon EB, Seto T, et al. RELAY: final overall survival for erlotinib plus ramucirumab or placebo in untreated, EGFR-mutated metastatic NSCLC[J]. J Thorac Oncol, 2025, 20(4): 487-499. DOI: 10.1016/j.jtho.2024.11.032.
5.Reungwetwattana T, Cho BC, Lee KH, et al. Lazertinib versus gefitinib tyrosine kinase inhibitors in treatment-naíve patients with EGFR-mutated advanced nSCLC: analysis of the Asian subpopulation in LASER301[J]. J Thorac Oncol, 2023, 18(10): 1351-1361. DOI: 10.1016/j.jtho.2023.06.016.
6.Zhou HQ, Zhang YX, Chen G, et al. Gefitinib (an EGFR tyrosine kinase inhibitor) plus anlotinib (an multikinase inhibitor) for untreated, EGFR-mutated, advanced non-small cell lung cancer (FL-ALTER): a multicenter phase III trial[J]. Signal Transduct Target Ther, 2024, 9(1): 215. DOI: 10.1038/s41392-024-01927-9.
7.Lu S, Zhou J, Jian H, et al. Befotertinib (D-0316) versus icotinib as first-line therapy for patients with EGFR-mutated locally advanced or metastatic non-small-cell lung cancer: a multicentre, open-label, randomised phase 3 study[J]. Lancet Respir Med, 2023, 11(10): 905-915. DOI: 10.1016/s2213-2600(23)00183-2.
8.NCI. Common Terminology Criteria for Adverse Events (CTCAE) v5.0[EB/OL]. (2017-11-27) [2025-08-29]. https://dctd.cancer.gov/research/ctep-trials/for-sites/adverse-events#ctcae.
9.Ding PN, Lord SJ, Gebski V, et al. Risk of treatment-related toxicities from EGFR tyrosine kinase inhibitors: a Meta-analysis of clinical trials of gefitinib, erlotinib, and afatinib in advanced EGFR-mutated non-small cell lung cancer[J]. J Thorac Oncol, 2017, 12(4): 633-643. DOI: 10.1016/j.jtho.2016.11.2236.
10.Mok TS, Cheng Y, Zhou X, et al. Updated overall survival in a randomized study comparing dacomitinib with gefitinib as first-line treatment in patients with advanced non-small-cell lung cancer and EGFR-activating mutations[J]. Drugs, 2021, 81(2): 257-266. DOI: 10.1007/s40265-020-01441-6.
11.Cho JH, Lim SH, An HJ, et al. Osimertinib for patients with non-small-cell lung cancer harboring uncommon EGFR mutations: a multicenter, open-label, phase II trial (KCSG-LU15-09)[J]. J Clin Oncol, 2020, 38(5): 488-495. DOI: 10.1200/jco.19.00931.
12.Soria JC, Ohe Y, Vansteenkiste J, et al. Osimertinib in untreated EGFR-mutated advanced non-small-cell lung cancer[J]. N Engl J Med, 2018, 378(2): 113-125. DOI: 10.1056/NEJMoa1713137.
13.Shalata W, Abu Jama A, Dudnik Y, et al. Adverse events in osimertinib treatment for EGFR-mutated non-small-cell lung cancer: unveiling rare life-threatening myelosuppression[J]. Medicina (Kaunas), 2024, 60(8): 1270. DOI: 10.3390/medicina 60081270.
14.Shi Y, Chen G, Wang X, et al. Furmonertinib (AST2818) versus gefitinib as first-line therapy for Chinese patients with locally advanced or metastatic EGFR mutation-positive non-small-cell lung cancer (FURLONG): a multicentre, double-blind, randomised phase 3 study[J]. Lancet Respir Med, 2022, 10(11): 1019-1028. DOI: 10.1016/s2213-2600(22)00168-0.
15.Yang JC, Camidge DR, Yang CT, et al. Safety, efficacy, and pharmacokinetics of almonertinib (HS-10296) in pretreated patients with EGFR-mutated advanced NSCLC: a multicenter, open-label, phase 1 trial[J]. J Thorac Oncol, 2020, 15(12): 1907-1918. DOI: 10.1016/j.jtho.2020.09.001.
16.Yuankai S, Gongyan C, Xiang W, et al. Furmonertinib (AST2818) versus gefitinib as first-line therapy for Chinese patients with locally advanced or metastatic EGFR mutation-positive non-small-cell lung cancer (FURLONG): a multicentre, double-blind, randomised phase 3 study[J]. Lancet Respir Med, 2022, 10(11): 1019-1028. DOI: 10.1016/s2213-2600(22)00168-0.
17.Xu Y, Chen M, Gao X, et al. Efficacy and safety of sunvozertinib monotherapy as first-line treatment in NSCLC patients with EGFR exon 20 insertion mutations: a phase 2, single-center trial[J]. Cancer Lett, 2025, 630: 217904. DOI: 10.1016/j.canlet.2025. 217904.
18.Solomon BJ, Mok T, Kim DW, et al. First-line crizotinib versus chemotherapy in ALK-positive lung cancer[J]. N Engl J Med, 2014, 371(23): 2167-2177. DOI: 10.1056/NEJMoa1408440.
19.Nishio M, Kim DW, Wu YL, et al. Crizotinib versus chemotherapy in Asian patients with ALK-positive advanced non-small cell lung cancer[J]. Cancer Res Treat, 2018, 50(3): 691-700. DOI: 10.4143/crt.2017.280.
20.Yang J, Liu G, Lu S, et al. Brigatinib versus alectinib in ALK-positive NSCLC after disease progression on crizotinib: results of phase 3 ALTA-3 trial[J]. J Thorac Oncol, 2023, 18(12): 1743-1755. DOI: 10.1016/j.jtho.2023.08.010.
21.Yuan X, Wang Y, Yang M, et al. A retrospective study of ensartinib-treated ALK-positive locally advanced or metastatic NSCLC patients in China[J]. Lung Cancer Manag, 2023, 12(4): Lmt61. DOI: 10.2217/lmt-2023-0005.
22.Shaw A, Bauer T, de Marinis F, et al. ALKfirst-line lorlatinib or crizotinib in advanced -positive lung cancer[J]. The New England journal of medicine, 2020, 383(21): 2018-2029. DOI: 10.1056/NEJMoa2027187.
23.de Langen AJ, Johnson ML, Mazieres J, et al. Sotorasib versus docetaxel for previously treated non-small-cell lung cancer with KRAS(G12C) mutation: a randomised, open-label, phase 3 trial[J]. Lancet, 2023, 401(10378): 733-746. DOI: 10.1016/s0140-6736(23)00221-0.
24.Jänne P, Riely G, Gadgeel S, et al. Adagrasib in non-small-cell lung cancer harboring a mutation[J]. New Engl J Med, 2022, 387(2): 120-131. DOI: 10.1056/NEJMoa2204619.
25.Shi Y, Fang J, Xing L, et al. Glecirasib in KRAS(G12C)-mutated nonsmall-cell lung cancer: a phase 2b trial[J]. Nat Med, 2025, 31(3): 894-900. DOI: 10.1038/s41591-024-03401-z.
26.Hong DS, DuBois SG, Kummar S, et al. Larotrectinib in patients with TRK fusion-positive solid tumours: a pooled analysis of three phase 1/2 clinical trials[J]. Lancet Oncol, 2020, 21(4): 531-540. DOI: 10.1016/s1470-2045(19)30856-3.
27.Doebele RC, Drilon A, Paz-Ares L, et al. Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: integrated analysis of three phase 1-2 trials[J]. Lancet Oncol, 2020, 21(2): 271-282. DOI: 10.1016/s1470-2045(19)30691-6.
28.Planchard D, Besse B, Groen HJM, et al. Dabrafenib plus trametinib in patients with previously treated BRAF(V600E)-mutant metastatic non-small cell lung cancer: an open-label, multicentre phase 2 trial[J]. Lancet Oncol, 2016, 17(7): 984-993. DOI: 10.1016/s1470-2045(16)30146-2.
29.Louisa L, Joshua S, Karen LR, et al. Emerging targets in non-small cell lung cancer[J]. Int J Mol Sci, 2024, 25(18): 10046. DOI: 10.3390/ijms251810046.
30.Li W, Xiong A, Yang N, et al. Efficacy and safety of taletrectinib in Chinese patients with ROS1+ non-small cell lung cancer: the phase II TRUST-I study[J]. J Clin Oncol, 2024, 42(22): 2660-2670. DOI: 10.1200/jco.24.00731.
31.Wolf J, Hochmair M, Han JY, et al. Capmatinib in MET exon 14-mutated non-small-cell lung cancer: final results from the open-label, phase 2 GEOMETRY mono-1 trial[J]. Lancet Oncol, 2024, 25(10): 1357-1370. DOI: 10.1016/s1470-2045(24)00441-8.
32.Drilon A, Clark JW, Weiss J, et al. Antitumor activity of crizotinib in lung cancers harboring a MET exon 14 alteration[J]. Nat Med, 2020, 26(1): 47-51. DOI: 10.1038/s41591-019-0716-8.
33.Mazieres J, Paik PK, Garassino MC, et al. Tepotinib treatment in patients with MET exon 14-skipping non-small cell lung cancer: long-term follow-up of the VISION phase 2 nonrandomized clinical trial[J]. JAMA Oncol, 2023, 9(9): 1260-1266. DOI: 10.1001/jamaoncol.2023.1962.
34.Paik PK, Felip E, Veillon R, et al. Tepotinib in non-small-cell lung cancer with MET exon 14 skipping mutations[J]. N Engl J Med, 2020, 383(10): 931-943. DOI: 10.1056/NEJMoa2004407.
35.Yu Y, Guo Q, Zhang Y, et al. Savolitinib in patients in China with locally advanced or metastatic treatment-naive non-small-cell lung cancer harbouring MET exon 14 skipping mutations: results from a single-arm, multicohort, multicentre, open-label, phase 3b confirmatory study[J]. Lancet Respir Med, 2024, 12(12): 958-966. DOI: 10.1016/S2213-2600(24)00211-X.
36.Ferrara R, Auger N, Auclin E, et al. Clinical and translational implications of RET rearrangements in non-small cell lung cancer[J]. J Thorac Oncol, 2018, 13(1): 27-45. DOI: 10.1016/j.jtho.2017.10.021.
37.Drilon A, Subbiah V, Gautschi O, et al. Selpercatinib in patients with RET fusion-positive non-small-cell lung cancer: updated safety and efficacy from the registrational LIBRETTO-001 phase I/II trial[J]. J Clin Oncol, 2023, 41(2): 385-394. DOI: 10.1200/jco.22.00393.
38.Griesinger F, Curigliano G, Thomas M, et al. Safety and efficacy of pralsetinib in RET fusion-positive non-small-cell lung cancer including as first-line therapy: update from the ARROW trial[J]. Ann Oncol, 2022, 33(11): 1168-1178. DOI: 10.1016/j.annonc.2022.08.002.
39.Zhou C, Li X, Wang Q, et al. Pyrotinib in HER2-mutant advanced lung adenocarcinoma after platinum-based chemotherapy: a multicenter, open-label, single-arm, phase II study[J]. J Clin Oncol, 2020, 38(24): 2753-2761. DOI: 10.1200/jco.20.00297.
40.Guan S, Chen X, Chen Y, et al. FOXO3 mutation predicting gefitinib-induced hepatotoxicity in NSCLC patients through regulation of autophagy[J]. Acta Pharm Sin B, 2022, 12(9): 3639-3649. DOI: 10.1016/j.apsb.2022.02.006.
41.Mizugaki H, Hamada A, Shibata T, et al. Exploration of germline variants responsible for adverse events of crizotinib in anaplastic lymphoma kinase-positive non-small cell lung cancer by target-gene panel sequencing[J]. Lung Cancer, 2019, 128: 20-25. DOI: 10.1016/j.lungcan.2018.12.002.
42.Liao D, Liu Z, Zhang Y, et al. Polymorphisms of drug-metabolizing enzymes and transporters contribute to the individual variations of erlotinib steady state trough concentration, treatment outcomes, and adverse reactions in epidermal growth factor receptor-mutated non-small cell lung cancer patients[J]. Front Pharmacol, 2020, 11: 664. DOI: 10.3389/fphar.2020.00664.
43.Veerman GDM, Boosman RJ, Jebbink M, et al. Influence of germline variations in drug transporters ABCB1 and ABCG2 on intracerebral osimertinib efficacy in patients with non-small cell lung cancer[J]. EClinicalMedicine, 2023, 59: 101955. DOI: 10.1016/j.eclinm.2023.101955.
44.Hichert V, Scholl C, Steffens M, et al. Predictive blood plasma biomarkers for EGFR inhibitor-induced skin rash[J]. Oncotarget, 2017, 8(21): 35193-35204. DOI: 10.18632/oncotarget.17060.
45.Kemski S, Molitor V, Steffens M, et al. Association between miRNA signatures in serum samples from epidermal growth factor inhibitor treated patients and skin toxicity[J]. Oncotarget, 2021, 12(10): 982-995. DOI: 10.18632/oncotarget.27953.
46.王可, 李娟, 孙建国, 等. 间变性淋巴瘤激酶抑制剂不良反应管理西南专家建议(2021年版)[J]. 中国肺癌杂志, 2021, 24(12): 815-828. [Wang K, Li J, Sun JG, et al. Recommendations from experts in the management of adverse reactions to ALK inhibitors(2021 Version)[J]. Chinese Journal of Lung Cancer, 2021, 24(12): 815-828.] DOI: 10.3779/j.issn.1009-3419.2021.102.32.
47.上海市抗癌协会癌症康复与姑息治疗专业委员会, 上海市抗癌协会肿瘤药物临床研究专业委员会, 中国老年保健协会肿瘤防治与临床研究管理专业委员会. 抗肿瘤治疗所致恶心呕吐全程管理上海专家共识(2024年版)[J]. 中国癌症杂志, 2024, 34(1): 104-134. [Cancer Rehabilitation and Palliative Professional Committee of Shanghai Anti-Cancer Association, Cancer Drug Clinical Research Committee of Shanghai Anti-Cancer Association, Cancer Prevention and Clinical Research Committee of Chinese Aging Well Association. Shanghai expert consensus on whole-process management of antineoplastic-induced nausea and vomiting (2024 edition) [J]. China Oncology, 2024, 34(1): 104-134.] DOI: 10.19401/j.cnki.1007-3639.2024.01.008.
48.胡洁, 林丽珠, 骆肖群, 等. EGFR-TKI不良反应管理专家共识[J]. 中国肺癌杂志, 2019, 22(2): 57-81. [Hu J, Lin LZ, Luo XQ, et al. EGFR-TKI ADR management Chinese expert consensus[J]. Chinese Journal of Lung Cancer, 2019, 22(2): 57-81.] DOI: 10.3779/j.issn.1009-3419.2019.02.01.
49.茅益民. 《中国药物性肝损伤诊治指南(2023年版)》解读[J]. 中华肝脏病杂志, 2024, 32(4): 312-317. [Mao YM. Interpretation of the Chinese guideline for diagnosis and management of drug-induced liver injury (2023 version)[J]. Chinese Journal of Hepatology, 2024, 32(4): 312-317.] DOI: 10.3760/cma.j.cn501113-20230829-00077.
50.Balagula Y, Lacouture ME, Cotliar JA. Dermatologic toxicities of targeted anticancer therapies[J]. J Support Oncol, 2010, 8(4): 149-161. https://pubmed.ncbi.nlm.nih.gov/20822032/.
51.Califano R, Tariq N, Compton S, et al. Expert consensus on the management of adverse events from EGFR tyrosine kinase inhibitors in the UK[J]. Drugs, 2015, 75(12): 1335-1348. DOI: 10.1007/s40265-015-0434-6.
52.Nishio M, Kato T, Toyozawa R, et al. Management of peripheral edema in patients with MET exon 14-mutated non-small cell lung cancer treated with small molecule MET inhibitors[J]. Target Oncol, 2022, 17(5): 597-604. DOI: 10.1007/s11523-022-00912-y.
53.Federico C, Denis MS, Oliver G, et al. Management of crizotinib therapy for ALK-rearranged non-small cell lung carcinoma: an expert consensus[J]. Lung Cancer, 2015, 87(2): 89-95. DOI: 10.1016/j.lungcan.2014.12.010.
54.Heinzerling L, Eigentler TK, Fluck M, et al. Tolerability of BRAF/MEK inhibitor combinations: adverse event evaluation and management[J]. ESMO Open, 2019, 4(3): e000491. DOI: 10.1136/esmoopen-2019-000491.
55.潘炽星, 李紫韵, 陈纯波. 血清镁在急性肾损伤诊疗中的研究进展[J]. 医学新知, 2024, 34(6): 707-716. [Pan CX, Li ZY, Chen CB. Research progress of serum magnesium in the diagnosis and treatment of acute kidney injury[J]. Yixue Xinzhi Zazhi, 2024, 34(6): 707-716.] DOI: 10.12173/j.issn.1004-5511.202403045.