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[ Abstract] Adverse drug reaction (ADR) represents a primary concern in global
pharmacovigilance. Individual genetic variations, particularly pharmacogenomics (PGx)
characteristics, are key factors contributing to the occurrence of ADR. In recent years, artificial
intelligence (AI) technologies have enabled the integration of multi-omics data for accurate ADR
prediction. This review summarizes Al methods for predicting ADR based on PGx. It begins by

organizing commonly used multi-source heterogeneous datasets related to PGx and ADR, then
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highlights application examples of AI models—such as traditional machine learning (e.g., support vector

machine, random forests) and deep learning (e.g., convolutional neural networks, graph neural networks)—in

this field. These models enable intelligent prediction of ADR by uncovering complex non-linear relationships

among genetic variations, clinical medication features, and ADR. However, the field still faces challenges,

including data heterogeneity, model interpretability, and obstacles in clinical translation. Finally, the review

outlines future research directions, such as multi-modal data fusion and explainable Al, aiming to advance the

development of personalized medication safety and precision medicine.

[Keywords] Adverse drug reaction; Parmacogenomics; Artificial intelligence; Machine learning;

Multi-source heterogeneous; Neural network
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machine learning
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