・论著・一次研究・

PPIs与重症缺血性脑卒中患者短期、长期死亡风险的关联:基于MIMIC-III数据库的回顾性队列研究

覃偲偲¹、张慧涛¹、潘海燕¹、朱琛丽¹、曾 利²

- 1. 中山大学附属第五医院重症医学科(广东珠海 519000)
- 2. 贵州中医药大学第二附属医院神经内科(贵阳 550003)

【摘要】目的 研究质子泵抑制剂(PPIs)的使用与重症缺血性脑卒中患者短期、长期死亡风险的关联。方法 基于美国重症监护医学信息数据库 III(MIMIC-III),纳入年龄 ≥ 18 岁、首次入住重症监护病房(ICU)并诊断为缺血性脑卒中的患者。根据住院期间是否使用过 PPIs(泮托拉唑、兰索拉唑和奥美拉唑),将患者分为 PPIs 组和非 PPIs 组。对比 2 组基线数据后,采用 Kaplan-Meier 生存曲线和 Cox 比例风险回归模型分析使用 PPIs 与重症缺血性脑卒中患者 ICU 死亡风险、30 d 死亡风险、90 d 死亡风险的关联。结果 共纳入 1 015 例患者,其中 PPIs 组 402 例,非 PPIs 组 613 例。基线资料显示,重症缺血性脑卒中患者的 ICU 死亡率、30 d 死亡率、90 d 死亡率分别为 15.37%,13.60%,20.10%。Kaplan-Meier 生存曲线表明,相对于非 PPIs 组,PPIs 组的 ICU 死亡风险较低(P=0.002)。Cox 比例风险回归模型在调整多个变量后的结果显示,PPIs 组相对于非PPIs 组的 ICU 死亡风险比为 0.671 9 [95%CI(0.478 8,0.942 8),P=0.021],但 2 组患者30 d 和 90 d 的死亡风险差异均无统计学意义(P > 0.05)。结论 重症缺血性脑卒中患者中,使用 PPIs 可能会有效降低患者的 ICU 死亡风险,但对患者的 30 d 死亡风险和 90 d 死亡风险没有改善作用。

【关键词】质子泵抑制剂;重症缺血性脑卒中;死亡风险;美国重症监护医学信息数据库 III

Association of PPIs use with short-term and long-term mortality risk in patients with severe ischemic stroke: a retrospective cohort study based on the MIMIC-III database

QIN Sisi¹, ZHANG Huitao¹, PAN Haiyan¹, ZHU Yaoli¹, ZENG Li²

- 1. Department of Critical Care Medicine, the Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai 519000, Guangdong Province, China
- 2. Department of Neurology, the Second Affiliated Hospital of Guizhou University of Chinese Medicine, Guiyang 550003, China

Corresponding author: ZENG Li, Email: 15185288088@163.com

[Abstract] Objective To investigate the association of proton pump inhibitors (PPIs)

DOI: 10.12173/j.issn.1005-0698.202306088

use with short-term and long-term mortality risk in patients with severe ischemic stroke. Methods This retrospective study based on the U.S. Medical Information Mark for Intensive Care III (MIMIC-III) database, ICU patients aged ≥18 years with the first ICU admission and a diagnosis of ischemic stroke were finally included in the study. All enrolled subjects were divided into PPIs group and non-PPIs group according to whether they had used PPIs (pantoprazole, lansoprazole and omeprazole) during hospitalization. Kaplan-Meier survival analyses and Cox regression models were used to analyze the association between the use of PPIs and the risk of ICU death, 30 d risk of death, 90 d risk of death in patients with severe ischemic stroke. Results A total of 1 015 patients were included, 402 cases in the PPIs group and 613 in the non-PPIs group. The ICU-mortality, 30 d and 90 d mortality were 15.37%, 13.60% and 20.10%, respectively. Kaplan-Meier survival analyses illustrated that the PPIs group survived better than non-PPIs group in ICU mortality analysis (P=0.002). In Cox regression analysis, after adjustment for potential confounders, the hazard ratio (HR) for ICU mortality in the PPIs group relative to the non-PPIs group was $0.671\ 9\ (95\%\text{CI}\ 0.478\ 8\ \text{to}\ 0.942\ 8, P=0.021),$ but there was no significant difference between 30 d and 90 d mortality (P>0.05). Conclusion In patients with severe ischemic stroke, the use of PPIs may be effective in reducing the risk of ICU death, but does not improve 30 d and 90 d risk of death in patients.

【Keywords】Proton pump inhibitors; Severe ischemic stroke; Mortality risk; MIMIC-III database

质子泵抑制剂(proton pump inhibitors, PPIs) 是治疗胃食管反流病和预防消化道出血的常用药 物[1],但有研究[2-3]表明包括心血管疾病、急性 肾损伤、慢性肾脏疾病、痴呆、肺炎、胃癌、艰 难梭菌感染和骨质疏松性骨折等严重不良反应/ 事件与 PPIs 使用相关。脑血管疾病是导致残疾和 死亡的主要疾病之一,在重症缺血性脑卒中患者 中尤为明显[4]。脑血管疾病常伴有胃肠黏膜损伤, 而这种损伤可能导致大出血^[5],因此 PPIs 被广泛 应用于重症缺血性脑卒中患者,但其在预防消化 道出血同时也存在潜在不良反应, 对患者有利有 弊。了解 PPIs 对重症缺血性脑卒中短期和长期预 后的影响,对临床合理用药具有重要意义。虽然 已有相关研究[6-7]表明,在一般人群中,单独使 用 PPIs 会增加首次缺血性卒中的风险,预防使 用 PPIs 与急性缺血性脑卒中患者的长期不良预后 (包括神经系统预后、卒中事件、复发缺血性卒 中和全因死亡)密切相关,然而关于 PPIs 的使用 与重症缺血性脑卒中患者短期、长期死亡风险之 间的关联仍需进一步研究。

本研究基于美国重症监护医学信息数据库 III (MIMIC-III),回顾性分析重症缺血性脑卒中患 者使用 PPIs(泮托拉唑、兰索拉唑和奥美拉唑) 的情况,进一步探讨 PPIs 的使用与患者的重症监护病房(ICU)死亡风险、30 d 死亡风险和 90 d 死亡风险之间的关联,为重症缺血性脑卒中患者合理使用 PPIs 提供循证医学证据支持。

1 资料与方法

1.1 数据来源

本研究的回顾性队列数据来源于 MIMIC-III 数据库提取的相关临床资料。MIMIC-III 数据库包含了 2001—2012 年在哈佛医学院贝斯以色列女执事医学中心 ICU 接受治疗的 53 423 例成年患者(16 岁及以上)的住院数据,收集了 380 个实验室测量指标和 4 579 张医院观察单 [8-9]。该数据库涵盖了多病种、数量巨大的 ICU 患者数据,且数据具有详细、全面、高时间分辨率的特点。研究者已通过数据库的相关课程,获得数据库的使用授权(证书编号: 11516031)。

研究人群的纳入标准: ①年龄≥ 18岁; ② 诊断缺血性脑卒中,依据国际疾病分类(ICD-9) 疾病编码识别,包括脑梗死伴有持续性偏头痛先 兆(34660、34661、34662、34663)、颅底动脉 闭塞狭窄伴脑梗死(43301)、颈动脉闭塞狭窄合 并脑梗死(43311)、椎动脉闭塞狭窄合并脑梗 死(43321)、脑梗死伴多侧及双侧脑前动脉闭塞狭窄(43331)、其他特定脑前动脉闭塞狭窄伴脑梗死(43381)、未指明的脑前动脉闭塞狭窄伴脑梗死(43391)、脑血栓合并脑梗死(43401)、脑动脉闭塞伴脑梗死(43411)、脑栓塞合并脑梗死(43491);③因缺血性脑卒中首次进入ICU监护治疗的患者;④有完整的病例分析。排除标准:①基线数据不完整;②入住ICU小于 24 h。

1.2 资料提取、分组及结局指标

从 MIMIC-III 数据库提取的资料包括:人口统计学资料(年龄、性别)、酗酒史、入住 ICU期间的合并症(包括高血压、糖尿病、肥胖、心力衰竭、呼吸衰竭、肾衰竭)、PPIs 和抗血小板药物使用情况。

根据患者在 ICU 住院期间是否使用过任何剂量的 PPIs(泮托拉唑、兰索拉唑或奥美拉唑), 将纳入病例分为 PPIs 组和非 PPIs 组。

结局指标为3个观察时间点的患者存活状态:①ICU 死亡:患者出ICU 时是否诊断死亡;②30 d 死亡:患者人ICU 后30 d 内及第30天时是否诊断死亡;③90 d 死亡:患者人ICU 后90 d 内及第90天时是否诊断死亡。

1.3 统计学分析

采用 R 4.1.0 软件进行统计分析。对计量资料

进行正态性检验(Kolmogorov-Smirnov 检验)后,符合正态分布的资料以是是表示,2组比较采用t 检验;非正态分布的资料以 $M(P_{25}, P_{75})$ 表示,2组比较采用 Wilcoxon 秩和检验。计数资料以n(%) 表示,组间比较采用 χ^2 检验或 Fisher精确概率法。采用 Kaplan-Meier 生存曲线分析2组缺血性脑卒中患者死亡风险随时间变化的特征,采用 log-rank 检验比较组间风险差异。采用Cox 比例风险回归模型并逐步调整混杂因素分析使用 PPIs 与重症缺血性脑卒中患者 ICU 死亡风险、30 d 死亡风险、90 d 死亡风险之间的相关性。P < 0.05 为差异有统计学意义。

2 结果

2.1 临床基本特征比较

最终纳入 1 015 例重症缺血性脑卒中患者,其中 PPIs 组患者 402 例,非 PPIs 组患者 613 例。2 组患者呼吸衰竭患病率、抗血小板药物使用率的差异有统计学意义 (P < 0.05),PPIs 组发生呼吸衰竭、使用抗血小板药物的人数更多;而 2 组年龄、性别分布、酗酒史、高血压患病率、糖尿病患病率、肥胖患病率、心力衰竭患病率、肾衰竭患病率、ICU 死亡率、30 d 死亡率、90 d 死亡率等变量差异均无统计学意义 (P > 0.05),见表 1。

表1 非PPIs组与PPIs组的临床基本特征[$M(P_{25}, P_{75}), n(\%)$]

Table 1. Basic characteristics in the non-PPIs group and the PPIs group $[M(P_{25}, P_{75}), n(\%)]$

		3	0 11	23, 73/, (71
临床特征	非PPIs组(n=613)	PPIs组(n=402)	Z / χ^2	P
年龄(岁)	73.1 (59.7, 83.0)	74.4 (61.4, 82.6)	14.67	0.590
性别			0.05	0.539
女性	313 (51.1)	208 (51.7)		
男性	300 (48.9)	194 (48.3)		
酗酒史	29 (4.7)	22 (5.5)	0.28	0.597
心力衰竭	114 (18.6)	95 (23.6)	0.97	0.052
高血压	429 (70.0)	278 (69.2)	0.08	0.779
糖尿病	169 (27.6)	128 (31.8)	2.14	0.143
肥胖	21 (3.4)	19 (4.7)	1.08	0.298
肾衰竭	64 (10.4)	50 (12.4)	0.97	0.324
呼吸衰竭	25 (4.1)	33 (8.2)	7.69	0.006
抗血小板药物	280 (45.7)	242 (60.2)	20.5	< 0.001
ICU死亡	95 (15.5)	61 (15.2)	0.02	0.889
30 d死亡	77 (12.6)	61 (15.2)	1.41	0.235
90 d死亡	117 (19.1)	87 (21.6)	0.99	0.320

2.2 PPIs的使用与重症缺血性脑卒中患者 短期、长期死亡风险的Kaplan-Meier生存 曲线分析

生存曲线 log-rank 法检验结果显示,与未使用 PPIs 的重症缺血性脑卒中患者相比,使用 PPIs 的重症缺血性脑卒中患者 ICU 死亡风险较低 (χ^2 =9.9,P=0.002),但 2组的 30 d死亡风险(χ^2 =1.5,P=0.223)和 90 d死亡风险(χ^2 =1.1,P=0.287)差异均无统计学意义,见图 1。

2.3 PPIs的使用与重症缺血性脑卒中患者 短期、长期死亡风险的Cox比例风险回归 模型分析

Cox 比例风险回归模型分析结果显示,在未调整变量的模型1中,与非 PPIs 组相比, PPIs 组

的 ICU 死亡风险更低 [风险比 (HR) =0.588 9, 95%CI (0.421 9, 0.821 9), P=0.002]; 在模型 2中, 调整年龄和性别后, PPIs 组的 ICU 死亡风险也更低 [HR=0.609 7, 95%CI (0.437 6, 0.849 7), P=0.003]; 在模型 3中, 对年龄、性别、酗酒史、高血压、糖尿病、肥胖、心力衰竭、呼吸衰竭、肾衰竭、抗血小板药物使用进行调整后,仍然得出相同的结果 [HR=0.671 9, 95%CI (0.478 8, 0.942 8), P=0.021], 见图 2A。在模型 1(P=0.223)、模型 2(P=0.223)、模型 3(P=0.369)中, 2组的 30 d 死亡风险差异均无统计学意义,见图 2B。模型 1(P=0.286)、模型 2(P=0.280)、模型 3(P=0.475)结果表明, 2组的 90 d 死亡风险差异均也无统计学意义,见图 2C。

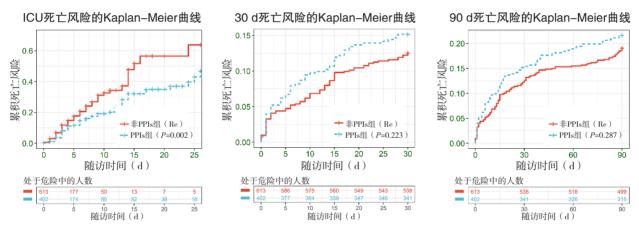


图1 Kaplan-Meier生存曲线比较非PPIs组与PPIs组的ICU死亡风险、30 d死亡风险和90 d死亡风险 Figure 1. A Kaplan-Meier survival curve showing the ICU-mortality risk, 30-day and 90-day mortality risk in the non-PPIs group versus the PPIs group

3 讨论

脑血管疾病作为仅次于缺血性心脏病的老年人第二大疾病,其中卒中不仅是脑血管疾病死亡的最常见原因,也是获得性残疾的主要原因^[10]。缺血性脑卒中主要是由血栓性或栓塞性事件引起的缺血性脑损伤,其病例约占所有类型卒中的85%^[11]。脑卒中后胃肠道并发症很常见,研究^[12-13]表明超过一半的脑卒中患者出现吞咽困难、胃肠道出血或大便失禁,对于卒中后胃肠道出血的原因尚不清楚,推测是由应激性溃疡引起^[14-15],观察性研究^[16]显示"应激性溃疡"引起的消化道出血多见卒中发作后1周,发病率为0.1%~8%。因此,对于卒中患者的胃肠道保护至关重要。

PPIs被广泛用于治疗与胃酸分泌有关的胃肠

道疾病,并作为标准治疗方法的首选药物^[6],主要用于消化性溃疡和消化不良,此外,PPIs 也可用于预防应激性溃疡^[17]。75%~100% 的重症患者被发现存在上消化道黏膜病变,应激性溃疡是危重患者出血的重要危险因素^[18],多个因素在应激性溃疡的发病机制中发挥作用,包括胃酸分泌、黏膜缺血和上消化道返流,在此过程中,胃黏膜的稳态和细胞防御机制均被破坏,细胞防御机制主要用于保护胃黏膜不受高酸性环境影响,而质子泵(H⁺–K⁺–ATP 酶)转运 H⁺ 是酸分泌调节的终末环节,PPIs 可以特异性阻断胃壁细胞 H⁺–K⁺–ATP 酶从而抑制胃酸分泌^[19],已有研究^[7,20]建议在胃肠道出血高危患者中使用 PPIs 预防应激性溃疡。虽然 PPIs 已被证实对胃肠道疾病的治疗有效,但其潜在严重不良反应,如骨折、艰

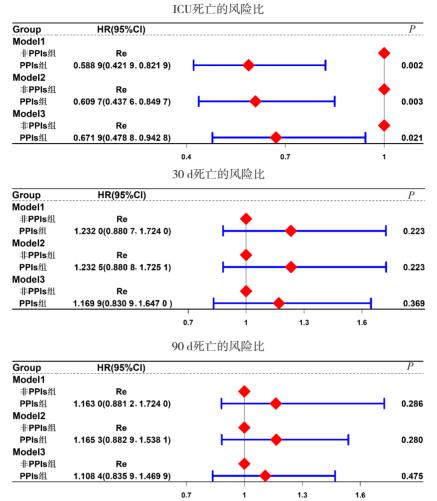


图2 Cox比例风险回归模型评估PPIs的使用与重症缺血性脑卒中患者ICU死亡风险、30 d死亡风险、90 d死亡风险之间的关联

Figure 2. A Cox proportional risk regression model estimating the association of PPIs use with the ICU, 30 d, 90 d mortality risk in patients with severe ischemic stroke

注: Model 1: 未调整变量; Model 2: 调整年龄、性别; Model 3: 调整年龄、性别、酗酒史、高血压、糖尿病、肥胖、心力衰竭、呼吸衰竭、肾衰竭、抗血小板药物使用; Re: 参照组。

难梭菌感染、急性肾损伤、慢性肾脏疾病、低镁血症等也让人担忧 [2,17];同时有研究 [21-22] 表明,PPIs 的使用也会增加心血管疾病、首次缺血性脑卒中 [6]、痴呆 [23] 和卒中后肺炎的风险 [24],可能的机制包括:①长期暴露于 PPIs 会产生氧化应激反应,损害内皮功能,引起细胞增殖和血管生成受损,加速人体内皮细胞衰老,导致心血管疾病和死亡风险增加 [25-26];②内皮源性一氧化氮(NO)是脑血流的重要内源性介质 [7,27],PPIs 可能抑制 NO 合酶活性引起 NO 减少,导致脑血流降低;还有研究 [28] 表明,与 NO 代谢和氧化应激相关的生化变化可能是脑缺血组织损伤的标志。鉴于 PPIs 作用的双重性,PPIs 的使用对缺血性脑卒中患者短期和长期预后的影响仍未知。本研

究的单因素分析结果表明,PPIs 组相对于非 PPIs 组的 ICU 死亡风险更低;Cox 比例风险回归模型 在调整多个变量后也得到了相同的结论,但 2 组的 30 d 死亡风险和 90 d 死亡风险均无显著差异。因此,重症缺血性脑卒中患者使用 PPIs 可能会有效降低 ICU 死亡风险。本研究为针对重症缺血性脑卒中患者使用 PPIs 后短期及长期预后的首次研究,某种程度上增加了 PPIs 在重症缺血性脑卒中患者预后方面的临床数据,为 PPIs 在临床使用起到一定的指导作用。

本研究也存在不足之处:① MIMIC-III 数据 库为单中心回顾性研究,虽然缺血性卒中的诊断 已得到验证,但仍存在编码不准确的可能,这种 编码偏差是使用数据库进行研究的固有限制,并 可能导致结果的可信度受损;②尽管本研究已调整了多个混杂因素,但仍不能排除未发现的混杂因素,如格拉斯哥昏迷评分(GCS)评分数据缺失较多,多因素分析时无法纳入该因素;③对于PPIs 的使用主要根据患者的药物使用记录判定,缺乏PPIs 用法及疗程信息,尚需要在真实世界进行更严格及标准化的前瞻性研究验证以上结论;④本研究的人群主要为欧洲人群,其结果能否应用于亚洲人群还需进一步研究。

综上所述,本研究表明在重症缺血性脑卒中 患者中使用 PPIs 可能会有效降低患者的 ICU 死亡 风险,但对患者的 30 d 死亡风险和 90 d 死亡风 险没有改善作用。未来可开展前瞻性研究验证以 上结论。

参考文献

- Sarnaik MK, Modi S, Pisipati Y, et al. Proton pump inhibitors: exploring cardiovascular complications and prescription protocol[J]. Cureus, 2021, 13(7): e16744. DOI: 10.7759/cureus.16744.
- 2 Xie Y, Bowe B, Yan Y, et al. Estimates of all cause mortality and cause specific mortality associated with proton pump inhibitors among US veterans: cohort study[J]. BMJ, 2019, 365: l1580. DOI: 10.1136/bmj.l1580.
- 3 Li T, Xie Y, Al-Aly Z. The association of proton pump inhibitors and chronic kidney disease: cause or confounding[J]. Curr Opin Nephrol Hypertens, 2018, 27(3): 182–187. DOI: 10.1097/mnh.00000000000000406.
- 4 Mendelson SJ, Prabhakaran S. Diagnosis and management of transient ischemic attack and acute ischemic stroke: a review[J]. JAMA, 2021, 325(11): 1088-1098. DOI: 10. 1001/jama.2020.26867.
- 5 Kawakubo K, Fujishima M. Management of gastrointestinal mucosal damage in patients with cerebrovascular disease[J]. Nihon Rinsho, 2002, 60(8): 1573–1579. https:// pubmed.ncbi.nlm.nih.gov/12187753/.
- 6 Wang YF, Chen YT, Luo JC, et al. Proton-pump inhibitor use and the risk of first-time ischemic stroke in the general population: a nationwide population-based study[J]. Am J Gastroenterol, 2017, 112(7): 1084-1093. DOI: 10.1038/ ajg.2017.101.
- 7 Fang L, Zhong W, Gong X, et al. Association of proton pump inhibitor prophylaxis on clinical outcome in acute

- ischemic stroke in China: a multicenter retrospective cohort study[J]. J Clin Med, 2022, 11(23): 6881. DOI: 10.3390/jcm11236881.
- 8 Yang J, Li Y, Liu Q, et al. Brief introduction of medical database and data mining technology in big data era[J]. J Evid Based Med, 2020, 13(1): 57–69. DOI: 10.1111/jebm.12373.
- 9 Johnson AE, Pollard TJ, Shen L, et al. MIMIC-III, a freely accessible critical care database[J]. Sci Data, 2016, 3: 160035, DOI: 10.1038/sdata.2016.35.
- 10 Beltrán Romero LM, Vallejo-Vaz AJ, Muñiz Grijalvo O. Cerebrovascular disease and statins[J]. Front Cardiovasc Med, 2021, 8: 778740. DOI: 10.3389/fcvm.2021.778740.
- 11 Radak D, Resanovic I, Isenovic ER. Link between oxidative stress and acute brain ischemia[J]. Angiology, 2014, 65(8): 667–676. DOI: 10.1177/0003319713506516.
- 12 Pluta R, Januszewski S, Czuczwar SJ. The role of gut microbiota in an ischemic stroke[J]. Int J Mol Sci, 2021, 22(2): 915. DOI: 10.3390/ijms22020915.
- Misra UK, Kalita J, O'Donnell MJ, et al. Gastrointestinal bleeding after acute ischemic stroke[J]. Neurology, 2009, 73(2): 160–161. DOI: 10.1212/WNL.0b013e3181ab9b46.
- 14 Camara-Lemarroy CR, Ibarra-Yruegas BE, Gongora-Rivera F. Gastrointestinal complications after ischemic stroke[J]. J Neurol Sci, 2014, 346(1-2): 20-25. DOI: 10.1016/j.jns.2014.08.027.
- 15 Fu J. Factors affecting the occurrence of gastrointestinal bleeding in acute ischemic stroke patients[J]. Medicine (Baltimore), 2019, 98(28): e16312. DOI: 10.1097/md. 0000000000016312.
- 16 Mo J, Huang L, Peng J, et al. Autonomic disturbances in acute cerebrovascular disease[J]. Neurosci Bull, 2019, 35(1): 133-144. DOI: 10.1007/s12264-018-0299-2.
- 17 Clarke K, Adler N, Agrawal D, et al. Indications for the use of proton pump inhibitors for stress ulcer prophylaxis and peptic ulcer bleeding in hospitalized patients[J]. Am J Med, 2022, 135(3): 313-317. DOI: 10.1016/j.amjmed.2021.09.010.
- 18 Bardou M, Quenot JP, Barkun A. Stress-related mucosal disease in the critically ill patient[J]. Nat Rev Gastroenterol Hepatol, 2015, 12(2): 98–107. DOI: 10.1038/nrgastro. 2014.235.
- 19 Stollman N, Metz DC. Pathophysiology and prophylaxis of stress ulcer in intensive care unit patients[J]. J Crit Care,

- $2005, 20(1); 35-45. \ \mathrm{DOI}; \ 10.1016/\mathrm{j.jerc.} \\ 2004.10.003.$
- 20 Cook D, Guyatt G. Prophylaxis against upper gastrointestinal bleeding in hospitalized patients[J]. N Engl J Med, 2018, 378(26): 2506–2516. DOI: 10.1056/NEJMra1605507.
- 21 Ghebremariam YT, LePendu P, Lee JC, et al. Unexpected effect of proton pump inhibitors: elevation of the cardiovascular risk factor asymmetric dimethylarginine[J]. Circulation, 2013, 128(8): 845–853. DOI: 10.1161/circulationaha.113.003602.
- 22 Charlot M, Ahlehoff O, Norgaard ML, et al. Proton-pump inhibitors are associated with increased cardiovascular risk independent of clopidogrel use: a nationwide cohort study[J]. Ann Intern Med, 2010, 153(6): 378–386. DOI: 10.7326/0003-4819-153-6-201009210-00005.
- 23 Gomm W, von Holt K, Thomé F, et al. Association of proton pump inhibitors with risk of dementia: a pharmacoepidemiological claims data analysis[J]. JAMA Neurol, 2016, 73(4): 410–416. DOI: 10.1001/jamaneurol. 2015.4791.
- 24 Marchina S, Doros G, Modak J, et al. Acid-suppressive medications and risk of pneumonia in acute stroke patients:

- a systematic review and meta-analysis[J]. J Neurol Sci, 2019, 400: 122-128, DOI: 10.1016/j.jns.2019.02.041.
- Yepuri G, Sukhovershin R, Nazari-Shafti TZ, et al. Proton pump inhibitors accelerate endothelial senescence[J]. Circ Res, 2016, 118(12): e36-e42. DOI: 10.1161/circresaha. 116.308807.
- 26 Flammer AJ, Anderson T, Celermajer DS, et al. The assessment of endothelial function: from research into clinical practice[J]. Circulation, 2012, 126(6): 753-767. DOI: 10.1161/circulationaha.112.093245.
- 27 Sehested TSG, Gerds TA, Fosbøl EL, et al. Long-term use of proton pump inhibitors, dose-response relationship and associated risk of ischemic stroke and myocardial infarction[J]. J Intern Med, 2018, 283(3): 268–281. DOI: 10.1111/joim.12698.
- 28 Taffi R, Nanetti L, Mazzanti L, et al. Plasma levels of nitric oxide and stroke outcome[J]. J Neurol, 2008, 255(1): 94–98. DOI: 10.1007/s00415-007-0700-y.

收稿日期: 2023 年 06 月 30 日 修回日期: 2023 年 08 月 25 日本文编辑: 杨 燕 周璐敏